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Abstract

We define analogues of homogeneous coordinate algebras for noncommutative two-tori with
real multiplication. We prove that the categories of standard holomorphic vector bundles on such
noncommutative tori can be described in terms of graded modules over appropriate homogeneous
coordinate algebras. We give a criterion for such an algebra to be Koszul and prove that the Koszul
dual algebra also comes from some noncommutative two-torus with real multiplication. These
results are based on the techniques of [Categories of holomorphic bundles on noncommutative
two-tori. math.AG/0211262] allowing to interpret all the data in terms of autoequivalences of the
derived categories of coherent sheaves on elliptic curves.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Noncommutative algebraic geometry is usually understood as the study of certain Abelian
categories replacing the usual category of (quasi-)coherent sheaves (see[2,10,16]). For
example, noncommutative projective schemes correspond to certain categories defined in
terms of modules over graded algebras in the way analogous to Serre’s theorem (see[2]).
However, it is rather disappointing that at present there is almost no connection between
noncommutative algebraic varieties overC and noncommutative topological spaces, which
according to Connes[6] are described byC∗-algebras. One of the indications that such a
connection exists is provided by the work[7], where Sklyanin algebras are related to some
noncommutative manifolds. In the present paper we give another example of a relation of
this kind. Namely, we show that noncommutative two-tori admitting “real multiplication”
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(i.e., nontrivial Morita autoequivalences) can be considered as underlying noncommutative
topological spaces for certain noncommutative algebraic varieties.

This relation is not so surprising given the recent studies of complex geometry on non-
commutative two-tori (see[8,14,17]). It may only seem a little odd that real multiplication
is relevant for our picture. Let us briefly explain this. Recall that the homogeneous coordi-
nate algebra of a projective scheme is defined using tensor powers of an ample line bundle.
In noncommutative world one can only take tensor powers of a bimodule. Therefore, in
order to construct an analogue of such algebra for a noncommutative two-torusTθ, where
θ ∈ R, one has to find a bimodule over the ring of functions onTθ which would be am-
ple in appropriate sense. The natural choice would be one of the so-called basic modules.
Now the Morita equivalence theory for noncommutative two-tori implies that an interesting
bimodule can be found among basic modules only when the parameterθ is stabilized by
a nontrivial element of SL2(Z)/{±1} under the fractional-linear action of this group on
R ∪ {∞}. In other words, the category of vector bundles onTθ should have a nontrivial
Morita autoequivalence. Note however, that there exists a generalization of the standard
approach to noncommutative projective schemes in which graded algebras are replaced
by more general objects calledZ-algebras (see[4,19]). If one allows these more general
noncommutative “Z-projective schemes” then the condition thatTθ has real multiplication
becomes unnecessary.

The results of this paper depend heavily on the study of categories of holomorphic vector
bundles onTθ in [14]. Recall that inloc. cit.we considered only certain class of holomorphic
bundles onTθ that we calledstandardand we constructed a fully faithful functor from the
category of such bundles to the derived categoryDb(X) of coherent sheaves on some elliptic
curveX. Moreover, we proved that the image of this functor consists of stable objects in
the heartCθ of certain nonstandardt-structure onDb(X) associated withθ (see 1.2; these
t-structures were defined in[5]). We conjecture that every holomorphic bundle onTθ is a
successive extension of standard holomorphic bundles. If true, this would imply an equiva-
lence ofCθ with the category of all holomorphic bundles onTθ (for irrationalθ). Since we do
not know the validity of this conjecture, we simply replace the category of all holomorphic
bundles onTθ byCθ. This allows us to switch from the context of noncommutative complex
geometry onTθ to the study of thet-structure onDb(X) associated withθ. Nontrivial Morita
autoequivalences ofTθ appearing whenθ is a quadratic irrationality correspond to nontrivial
autoequivalencesF : Db(X)→ Db(X) preserving the correspondingt-structure.

The graded algebras associated withTθ can now be viewed as examples of the following
general construction. Given an additive categoryC, an additive functorF : C→ C and an
objectO of C, we define an associative graded ring

AF,O = ⊕
n≥0

HomC(O, F
n(O)),

where(Fn : C → C, n ≥ 0) are the functors obtained by iteratingF (soF0 = IdC). The
multiplication is defined as the composition of the natural maps

HomC(O, F
m(O))⊗ HomC(O, F

n(O))

→ HomC(F
n(O), Fm+n(O))⊗ HomC(O, F

n(O))→ HomC(O, F
m+n(O)).
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The homogeneous coordinate ring of a projective schemeX appears as a particular case
of this construction whenC is the category of coherent sheaves onX, F is the functor of
tensoring with an ample line bundleL onX, O = OX is the structure sheaf. Slightly more
general rings are obtained when takingF to be of the formF(A) = L⊗ σ∗A, whereσ is
an automorphism ofX. The corresponding rings are twisted homogeneous coordinate rings
considered in[1].

The example relevant for noncommutative tori with real multiplication is whenC = Cθ ⊂
Db(X), whereX is an elliptic curve,F is the autoequivalence ofDb(X) preservingCθ. In
Section 3we study corresponding graded algebrasAF,F, whereF is a stable object ofCθ.
Namely, we compute the Hilbert series ofAF,F and formulate simple criterions in terms of
discrete invariants of(F,F) for the algebraAF,F to be generated in degree 1, to be quadratic,
and to be Koszul. We also observe that ifAF,F is Koszul then the Koszul dual algebra is
again of the same form: it is isomorphic toARF◦F−1,F, whereRF is certain twist functor
associated withF (seeSection 3.3).

In Section 4we prove that every categoryCθ, whereθ is a quadratic irrationality, contains
anamplesequence of objects of the form(FnF), whereF : Cθ → Cθ is an autoequivalence.
This means thatCθ can be recovered from the corresponding graded algebraAF,F by the
noncommutative analogue of Proj-construction considered in[2]. One technical point is
that the categoriesCθ are non-Noetherian, so we have to apply the main result of[13] that
generalizes (a part of) the main theorem of[2] to non-Noetherian case.

It would be interesting to try to extend some of our results to more general algebras of
the formAF,F, whereF is an autoequivalence of the derived categoryDb(X) of coherent
sheaves on a smooth projective varietyX,F is an object ofDb(X). The first natural question
is whether there are interesting examples whenF preserves somet-structure onDb(X). In
the case whenX is an Abelian variety one source of such examples should be given by
noncommutative tori generalizing the picture described in[14].

Another perspective for the future work is to try to connect our results with Manin’s
program in[11] to use noncommutative two-tori with real multiplication for the explicit
construction of the maximal Abelian extensions of real quadratic fields.

Convention. With the exception ofSection 3.1all the objects (varieties, categories) are
defined over an arbitrary fieldk.

2. Preliminaries on derived categories of elliptic curves

2.1. Structure of the group of autoequivalences

Let X be an elliptic curve, Aut(Db(X)) be the group of (isomorphism classes of) exact
autoequivalences ofDb(X). There is a natural surjective homomorphism

π : Aut(Db(X))→ SL2(Z),

defined by the ruleπ(F) = g ∈ SL2(Z), such that for every objectF ∈ Db(X) one has(
degF(F)

rk F(F)

)
= g

(
degF

rkF

)
.
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For example, ifF is the functor of tensoring with a line bundleL thenF projects to the
matrix(

1 deg(L)

0 1

)
.

LetS : Db(X)→ Db(X)be the Fourier–Mukai transform considered as an autoequivalence
of Db(X) via the isomorphism̂X � X. Then

π(S) =
(

0 −1

1 0

)
.

The shift functorF �→ F[1] maps underπ to the matrix−id ∈ SL2(Z). We denote by
Aut(X) the group of automorphisms ofX preserving the neutral element. It can be identified
with a subgroup of Aut(Db(X)): to every automorphismσ : X→ X there corresponds an
autoequivalenceσ∗ = (σ−1)∗ : Db(X)→ Db(X). Clearly, the homomorphismπ is trivial
on this subgroup.

On the other hand, for every Abelian varietyX there is a homomorphism

γX : Aut(Db(X))→ Sp(X× X̂),

where Sp(X× X̂) is the group ofsymplecticautomorphisms ofX× X̂, i.e. automorphisms
preserving the line bundlep∗14P ⊗ p∗23P

−1 on (X × X̂)2, whereP is the Poincaré line
bundle onX × X̂. The homomorphismγX was defined by Orlov[12, Corollary 2.16]. He
also proved that it fits into an exact sequence

1→ (X× X̂)(k)× Z→ Aut(Db(X))
γX−→Sp(X× X̂)→ 1,

where the subgroup(X× X̂)(k) corresponds to functors of translation by points ofX and
of tensor products with line bundles in Pic0(X), while Z ⊂ Aut(Db(X)) is the subgroup
of shiftsA �→ A[n]. More precisely, to a point(x, ξ) ∈ (X × X̂)(k) one associates the
autoequivalence

Φ(x,ξ) : Db(X)→ Db(X) : F �→ t∗−x(F)⊗ P|X×ξ,
wheretx′ : X → X denotes the translation byx′ ∈ X(k). The subgroup(X × X̂)(k) ⊂
Aut(Db(X)) is normal and the adjoint action ofF ∈ Aut(Db(X)) is given precisely by
γX(F) (see[12, Corollary 2.13]).

In the case of an elliptic curve we can identifyX with X̂, so the group Sp(X× X̂) can be
identified with the group Sp(X×X) of matrices(

a b

c d

)

with entries in the ring End(X) satisfying the equations

ād − c̄b = 1, ad̄ − bc̄ = 1, āc = c̄a,

b̄d = d̄b, ab̄ = bā, cd̄ = dc̄,

wheref �→ f̄ is the Rosati involution on End(X).
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Lemma 2.1. The groupSp(X×X) is isomorphic to(Aut(X)×SL2(Z))/{±1}, where the
subgroup{±1} is embedded diagonally.

Proof. Note that for everya ∈ Aut(X) one hasāa = 1. Hence, Aut(X) embeds into
Sp(X×X) as the central subgroup of diagonal matrices(

a 0

0 a

)
.

We have to prove that every element in Sp(X × X) is a product of such a matrix with a
matrix in SL2(Z). If one of the entries of a matrix(

a b

c d

)
∈ Sp(X×X)

is zero then this is easy. Assuming that all the entries are nonzero we note that the condition
ab̄ ∈ Z implies thata ∈ Qb. Therefore, we can writea = a′r, b = b′r for somer ∈
End(X)Q and a pair of relatively prime integers(a′, b′). From the conditiona, b ∈ End(X)
we immediately derive thatr ∈ End(X). Using the conditions̄ac ∈ Z, b̄d ∈ Z we can
also writec = c′r̄−1, d = d′r̄−1 for some rational numbers(c′, d′). Sincec, d, andr̄ are
elements of End(X) we obtain thatc′ andd′ are integers. The equationād− c̄b = 1 implies
that the matrix(

a′ b′

c′ d′

)

belongs to SL2(Z). Finally, sincec′r̄−1 ∈ End(X) andd′r̄−1 ∈ End(X) it follows that
r̄−1 ∈ End(X), sor is a unit. �

Let us setAut(Db(X)) = Aut(Db(X))/(X× X̂)(k). According to the above lemma the
homomorphismγX induces a surjective homomorphism

γX : Aut(Db(X))→ (AutX× SL2(Z))/{±1}
with the kernelZ. The homomorphismπ also factors through a homomorphism

π : Aut(Db(X))→ SL2(Z).

It is easy to check that the homomorphismsAut(Db(X)) → SL2(Z)/{±1} induced by
γX andπ differ by an automorphism of SL2(Z). On the other hand, there is a natural
action of Aut(Db(X)) onK0(X) that preserves the subgroupK0(X)0 ⊂ K0(X) consisting
of classes of zero degree and zero rank. Note that the determinant gives an isomorphism
det :K0(X)0→ Pic0(X). From this one can see that the action of Aut(Db(X)) onK0(X)0
factors throughAut(Db(X)).

Theorem 2.2. There exists a homomorphismAut(Db(X)) → Aut(X) : F �→ αF , such
that

F(a) = αF (a)
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for everya ∈ K0(X)0. The induced homomorphism

Aut(Db(X))→ Aut(X)× SL2(Z) : F �→ (αF , π(F))

fits into the exact sequence

1→ 2Z→ Aut(Db(X))→ Aut(X)× SL2(Z)→ 1,

where2Z is the subgroup of even shiftsA �→ A[2n].

Proof. We have an exact sequence

1→ Z→ Aut(Db(X))/Aut(X)
π̄−→SL2(Z)/{±1} → 1, (2.1)

where the homomorphism̄π is induced byπ,Z is the subgroup of shifts. Indeed, this follows
from the fact that̄π differs from the homomorphism induced byγX by an automorphism
of SL2(Z)/{±1} and from the fact that ker(γX) = Z. One consequence of this is that
Aut(Db(X)) is generated by the subgroup Aut(X) together with the shiftA �→ A[1], the
tensoring functorT(A) = A⊗L, whereL is a line bundle of degree 1, and the Fourier–Mukai
transformS. Since the action of all of these autoequivalences onK0(X) is known, we derive
that for everyF ∈ Aut(Db(X)) there exists an automorphismαF ∈ Aut(X) such thatF
acts onK0(X)0 in the same way asαF . Similarly, we can consider the action ofF on
K0(X ⊗k k̄)0, wherek̄ is an algebraic closure ofk. The above argument shows that there
exists uniqueαF defined overk, such thatF acts onK0(X⊗k k̄)0 asαF . It is clear that the
homomorphismF �→ αF restricts to the identity map on Aut(X) ⊂ Aut(Db(X)). Together
with surjectivity ofπ this immediately implies surjectivity of the mapF �→ (αF , π(F)).
The kernel of this map clearly contains the subgroup of even shifts 2Z ⊂ Z ⊂ Aut(Db(X)).
Using the exact sequence(2.1)one can easily see that this kernel coincides with 2Z. �

Let Aut(Db(X))0 ⊂ Aut(Db(X)) (resp., Aut(Db(X))0 ⊂ Aut(Db(X))) be the subgroup
consisting ofF with αF = 1. From the above theorem we get an exact sequence

1→ 2Z→ Aut(Db(X))0→ SL2(Z)→ 1.

The following proposition can be viewed as an analogue of the theorem of the cube for
autoequivalences ofDb(X).

Proposition 2.3. For everyF ∈ Aut(Db(X)) one has

[F3(a)] − (NF + αF )[F
2(a)] + (1+NFαF)[F(a)] − αF [a] = 0 (2.2)

in K0(X) for everya ∈ K0(X), whereNF = tr(π(F)). In particular, if F ∈ Aut(Db(X))0

then

[F3(a)] − (NF + 1)[F2(a)] + (NF + 1)[F(a)] − [a] = 0.

Proof. SetN = NF . We claim that [F2(a)]−N[F(a)]+ [a] ∈ K0(X)0 ⊂ K0(X) for every
a ∈ K0(X). Indeed, this follows immediately from the fact thatF acts as an elementg on
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the pair(deg, rk), whereg2−Ng+ 1= 0. It remains to applyF to this element inK0(X)0
and to use the definition ofαF . �

Example 2.4. LetF be of the form(⊗L) ◦ σ∗, whereL is a line bundle,σ is a translation
by a point onX. ThenαF = 1 and

F2 � (⊗L⊗ σ∗L) ◦ σ∗, F3 � (⊗L⊗ σ∗L⊗ (σ2)∗L) ◦ σ∗,
so(2.2)amounts to the identity

[L⊗ σ∗L⊗ (σ2)∗L] − 3[L⊗ σ∗L] + 3[L] − [OX] = 0,

or equivalently

(σ2)∗L � σ∗L2⊗ L−1.

On the other hand, this isomorphism is a direct consequence of the theorem of the cube.
This is why we can viewProposition 2.3as an analogue of this theorem for more general
autoequivalences.

2.2. t-structures onDb(X)

Let us say that an objectF ∈ Db(X) is stableif F = V [n], wheren ∈ Z, V is either
a stable vector bundle or the structure sheaf of ak-point. It is easy to see that an object
F ∈ Db(X) is stable if and only if Hom(F,F) = k (since every object inDb(X) is
isomorphic to the direct sum of its cohomology sheaves).

Below we are going to use some basic notions and results of the torsion theory that can
be found in[9]. For every real numberθ we consider at-structure(Dθ,≤0,Dθ,≥0) onDb(X)

defined as follows. First, let us define a torsion pair(Coh>θ,Coh≤θ) in the category Coh(X)
of coherent sheaves onX. By the definition,F ∈ Coh>θ (resp., Coh≤θ) if all semistable
factors ofF have slope> θ (resp.,≤ θ). Note that objects of Coh>θ are allowed to have
arbitrary torsion (we consider torsion sheaves as having the slope+∞). Now thet-structure
associated withθ is defined by the rule

Dθ,≤0 := {K ∈ Db(X) : H>0(K) = 0, H0(K) ∈ Coh>θ},
Dθ,≥1 := {K ∈ Db(X) : H<0(K) = 0, H0(K) ∈ Coh≤θ}.

The fact that this is indeed at-structure follows from the torsion theory (see[9]). The
heart of thist-structure isCθ(X) := Dθ,≤0 ∩ Dθ,≥0. It is equipped with the torsion pair
(Coh≤θ[1],Coh>θ).

It is convenient to extend the above definition toθ = ∞ by letting(D∞,≤0,D∞,≥0) to be
the standardt-structure onDb(X). In the following proposition we list some properties of
theset-structures. Let us denotevF = (deg(F), rk(F)) ∈ Z2 for F ∈ Db(X). Note that for
F ∈ Aut(Db(X))one hasvF(F) = π(F)(vF), where SL2(Z)acts onZ2 as on column vectors.

Proposition 2.5.

(i) The categoryCθ(X) has cohomological dimension1 and there is an equivalence
Db(Cθ(X)) � Db(X).
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(ii) If θ ∈ R \Q then one has

{vF|F ∈ Cθ(X),F �= 0} = Hθ ∩ Z2,

whereHθ = {(x1, x2)|x1 − θx2 > 0}. If θ ∈ Q then the above statement is true with
the half-planeHθ replaced by its union with the rayR≤0(θ,1).

Proof.

(i) Let us first prove that Hom>1
Db(X)

(A,B) = 0 for everyA,B ∈ Cθ(X). If both objectsA
andB belong to one of the subcategories Coh>θ or Coh≤θ[1], then the assertion is clear.
If A ∈ Coh>θ, B ∈ Coh≤θ[1] then Homi

Db(X)
(A,B) = Homi+1

Db(X)
(A,B[−1]) = 0 for

i ≥ 1. On the other hand,

Homi
Db(X)

(B,A) = Homi−1
Db(X)

(B[−1], A) � Hom2−i
Db(X)

(A,B[−1])∗ = 0

for i ≥ 2, since HomCoh(X)(A,B[−1]) = 0.
The second assertion follows from this by the standard argument (see, e.g.[3]).

(ii) This follows from the fact that primitive lattice vectors contained inH ∪R≤0(θ,1) are
exactly vectorsvF, whereF is a stable object belonging to Coh>θ or Coh≤θ[1].

�

It is not difficult to calculate the action of autoequivalences ofDb(X)on theset-structures.
We denote byθ �→ gθ = (aθ + b)/(cθ + d), where

g =
(
a b

c d

)
∈ SL2(Z),

the standard fractional-linear action ofg onR ∪ {∞}.

Proposition 2.6. For everyF ∈ Aut(Db(X)) and everyθ ∈ R∪ {∞} one hasF(Dθ,≤0) =
Dgθ,≤0[n] (resp., F(Dθ,≥0) = Dgθ,≥0[n]), whereg = π(F) ∈ SL2(Z), n is some integer.

Proof. The assertion is clear whenF is a translation or the tensor product with a line bundle,
or the pull-back under an automorphism. Hence, it suffices to consider the caseF = S,
whereS is the Fourier–Mukai transform. For every segmentI ⊂ R ∪ {+∞} let us denote
by CohI(X) ⊂ Coh(X) the full subcategory in Coh(X) consisting of sheavesF such that
all semistable factors ofF have slope inI (recall that torsion sheaves have slope+∞).
Assume first thatθ ∈ R, θ > 0. SinceS transforms the slopes by the mapµ �→ −µ−1, we
have

S(Coh(θ,+∞]) = Coh(−θ−1,0], S(Coh(0,θ] [1]) = Coh(−∞,−θ−1] [1],

S(Coh(−∞,0][1]) = Coh(0,+∞] .

This immediately implies thatS sends thet-structure associated withθ to the t-structure
associated with−θ−1. SinceS2 = [−id]∗[−1], it follows that for θ ∈ R, θ < 0 one
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hasS(Dθ,≤0,Dθ,≥0) = (D−θ−1,≤0[−1],D−θ−1,≥0[−1]). Similarly, it easy to see that
S switches (up to a shift) the standardt-structure with thet-structure corresponding to
θ = 0. �

Let us consider the bilinear formχ(F1,F2) :=∑i(−1)i dim Homi(F1,F2) onK0(X),
where Homi(F1,F2) := HomDb(X)(F1,F2[i]). It is easy to see that

χ(F1,F2) = −det(vF1, vF2).

The kernel ofχ is exactly the subgroupK0(X)0 ⊂ K0(X) consisting of elements of zero
degree and zero rank. Abusing the notation we also setχ(v, v′) := −det(v, v′) for v, v′ ∈ Z2,
so thatχ(F1,F2) = χ(vF1, vF2).

The following lemma generalizes to categoriesCθ(X) the well-known fact about stable
bundles onX.

Lemma 2.7. LetF1,F2 be a pair of stable objects inCθ(X) such thatχ(F1,F2) > 0.Then
Hom1(F1,F2) = 0 anddim Hom(F1,F2) = χ(F1,F2).

Proof. By Proposition 2.5(i) we haveχ(F1,F2) = dim Hom(F1,F2)−dim Hom1(F1,F2),
so it is enough to check the vanishing of Hom1(F1,F2). In the case when bothF1 andF2
belong to Coh>θ (resp., Coh≤θ[1]) the assumptionχ(vF1, vF2) > 0 implies thatµ(F1) <

µ(F2) (resp.,µ(F1[−1]) < µ(F2[−1])). Hence, in this case the assertion is clear. It is easy
to see that the caseF1 ∈ Coh≤θ[1],F2 ∈ Coh>θ cannot occur. Indeed, since the vectorsvF1

andvF2 belong toHθ andχ(vF1, vF2) > 0, the condition rkF2 > 0 implies that rkF1 > 0.
In the remaining caseF1 ∈ Coh>θ andF2 ∈ Coh≤θ[1], so the assertion follows from the
vanishing of Hom2(F1,F2[−1]). �

3. Noncommutative tori, autoequivalences of Db(X) and related algebras

3.1. Morita autoequivalences of noncommutative tori and analogues of homogeneous
coordinate rings

We refer to[15] for an introduction and a survey of main results in the theory of non-
commutative tori. Recall that for everyθ ∈ R the algebraAθ of smooth functions on
the noncommutative torusTθ is the algebra of series

∑
an1,n2U

n1
1 U

n2
2 in variablesU1, U2

satisfying the relation

U1U2 = exp(2πiθ)U2U1,

such that the coefficient function(n1, n2) → an1,n2 ∈ C is rapidly decreasing at infinity.
By the definition, vector bundles onTθ are finitely generated projectiveAθ-modules (we
always consider right modules). A complex structure onTθ is given by a derivationδτ :
Aθ → Aθ, such thatδτ(U1) = τ, δτ(U2) = 1, whereτ ∈ C \ R (following [14] we will
usually impose the condition Im(τ) < 0). We denote byTθ,τ the noncommutative torusTθ
equipped with this complex structure. A holomorphic structure on a vector bundle is given
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by an operator∇ : E → E on the corresponding projective rightAθ-module satisfying
∇(ea) = ∇(e)a + eδτ(a), wheree ∈ E, a ∈ Aθ. As in [14] we only considerstandard
holomorphic vector bundles onTθ,τ that are given by certain family of standard holomorphic
structures onbasic modules.

Recall that a basicAθ-moduleE is uniquely determined by its rank which is a primitive
positive element inZ+Zθ (we assume thatθ is irrational). The algebra of endomorphisms
of E can be identified withAθ′ for someθ′ ∈ R and the functorE′ �→ E′ ⊗Aθ′ E is a Morita
equivalence between the categories of rightAθ′ -modules and rightAθ-modules. It is known
thatθ′ is necessarily of the formθ′ = gθ for someg ∈ SL2(Z)/{±1}. It is convenient to
lift elements of SL2(Z)/{±1} to elementsg of SL2(Z) satisfying the conditioncθ+ d > 0,
where

g =
(
a b

c d

)
.

For every suchg ∈ SL2(Z) there is a basic rightAθ-moduleEg(θ) of rank rk(Eg(θ)) =
cθ + d equipped with an isomorphism EndAθ

(Eg(θ)) � Agθ (see[14, Section 1.1]).
Standard holomorphic structures onEg(θ) are parametrized by the points of a complex

elliptic curveXτ = C/(Z+Zτ). As we have shown in[14] (Proposition 4.1), fixing such a
structure we obtain the Morita equivalenceE′ �→ E′ ⊗Aθ

Eg(θ) between the categories of
holomorphic bundles onTgθ,τ andTθ,τ (preserving the subcategories of standard holomor-
phic bundles).

We are interested in the situation wheng(θ) = θ for some nontrivialg ∈ SL2(Z)/{±1}. It
is easy to see that this happens exactly when eitherθ is rational orθ generates a real quadratic
extension ofQ. In this caseE = Eg(θ) has a natural structure ofAθ–Aθ-bimodule, so we
can consider its tensor powers

E⊗n := E⊗Aθ
· · · ⊗Aθ

E(n times) � Egn(θ),

where the last isomorphism follows from the general formula for the tensor product of basic
modules (see, e.g. Proposition 1.2 of[14]). If we equipE with a standard holomorphic
structure thenE⊗n acquires the induced holomorphic structure, so we can consider the
corresponding space of holomorphic vectorsH0(E⊗n). Note that in order for these spaces
to be nonzero we need to impose the conditionc > 0 (where we assume that Im(τ) < 0;
see[14, Proposition 2.5]). For n = 0 we setE⊗0 = Aθ and equip it with the standard
holomorphic structureδτ . Now there is a natural structure of an associative algebra on

BE := ⊕
n≥0

H0(E⊗n)

given by the tensor product of holomorphic vectors. Clearly, this algebra is a direct gen-
eralization of the homogeneous coordinate ring. One can also define analogues of twisted
homogeneous coordinate ring by changing the bimodule structure onE. Namely, one can
leave the rightAθ-module structure the same and twist the leftAθ-module structure by some
holomorphic (i.e., commuting withδτ) automorphism ofAθ.

Recall that in[14] we constructed an equivalence between the derived category of standard
holomorphic vector bundles onTθ,τ and the full subcategory of stable objects in the derived
categoryDb(X) of coherent sheaves on the elliptic curveX = Xτ = C/(Z + τZ). This



172 A. Polishchuk / Journal of Geometry and Physics 50 (2004) 162–187

equivalence sends each standard holomorphic bundle of rankmθ + n to a stable object in
Db(X) of degreem and rankn. The image of the category of holomorphic bundles under
this equivalence belongs toC−θ

−1
(up to a shift). Moreover, the Morita autoequivalence

E′ �→ E′ ⊗Aθ
Eg(θ), whereg(θ) = θ, corresponds to some autoequivalenceF : Db(X)→

Db(X) preservingC−θ
−1 ⊂ Db(X), such thatπ(F) = gt (the transposed matrix tog) Note

that this is compatible withProposition 2.6sincegt(−θ−1) = −θ−1. It is also easy to
see from the explicit formulas for the equivalence of[14] thatF belongs to the subgroup
Aut(Db(X))0 ⊂ Aut(Db(X)) introduced inSection 2.1. By twisting the leftAθ-module
structure onEg(θ) with some holomorphic automorphisms ofAθ we can get more general
autoequivalencesF with π(F) = gt .

Let (Fn, n ≥ 0) be the image of the sequence of holomorphic bundles(E⊗n) under
the above equivalence of categories. Then we haveFn = Fn(F0) and there is a natural
isomorphism of algebras

BE � AF,F0.

This isomorphism allows us to switch to the language oft-structures and autoequivalences
of Db(X) in the further study of these algebras.

It is sometimes convenient to change the point of view slightly. Namely, the condition
gθ = θ is equivalent to the condition

r2− (a+ d)r + 1= 0,

wherer = cθ+d. In other words,r is an eigenvalue ofg. Note thatθ can be recovered from
the pair(g, r) by the formulaθ = (r − d)/c. Thus, we can start with an arbitrary matrixg
in SL2(Z) having real positive eigenvalues andc > 0. Then fixing one of the eigenvaluesr
of g, we get a family of graded algebras

Bg,r(τ) = ⊕
n≥0

H0(Tθ,τ, E
⊗n)

parametrized byτ ∈ C such that Im(τ) < 0, whereθ = (r − d)/c, E = Eg(θ) is equipped
with a standard holomorphic structure∇̄0 (see[14]). Note that for every upper-triangular
matrixu ∈ SL2(Z) one hasBugu−1,r(τ) � Bg,r(τ), so this family of algebras really lives on
a double covering of SL2(Z)/Ad(Z), whereZ is embedded as upper-triangular matrices in
SL2(Z).

Proposition 3.1. There is an isomorphism of graded algebras

Bg,r(τ)
opp� Bg′,r−1(τ),

where

g′ =
(
d b

c a

)
.

Proof. We have a natural isomorphismA−θ � A
opp
θ , identical on generatorsU1 andU2.

Thus, we can considerE = Eg(θ) as anA−θ–A−θ-bimodule. It is easy to see that as such
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a bimoduleE is isomorphic toEg′(−θ). Moreover, this isomorphism is compatible with
standard holomorphic structures up to a scalar. This implies the result. �

3.2. Algebras associated with autoequivalences andt-structures

We want to look at the algebrasAF,F, whereF ∈ Db(X) is a stable object,F : Db(X)→
Db(X) is an autoequivalence. In order to get interesting algebras we would like to impose
the conditionFn(F) �� F and Hom(F, Fn(F)) �= 0 for all sufficiently largen ≥ 0. We are
going to show that this condition implies that the corresponding elementπ(F) ∈ SL2(Z)

has positive real eigenvalues.

Lemma 3.2. For g ∈ SL2(Z) andv ∈ Z2 \ {0} the following conditions are equivalent:

(i) χ(v, gnv) > 0 for all sufficiently large n;
(i)′ χ(v, gnv) > 0 for all n > 0;
(ii) g has positive real eigenvalues andχ(v,gv) > 0.

Proof. First, let us show that (i) implies (ii). SetN = tr(g). Theng2−Ng+1= 0. Hence,

χ(v, gnv)−Nχ(v, gn−1v)+ χ(v, gn−2v) = 0.

From this we immediately derive that

∑
n≥0

χ(v, gnv)tn = Mt

1− Nt+ t2
,

whereM = χ(v,gv). Therefore, condition (ii) implies that all coefficients of the series
M(1− Nt+ t2)−1 except for a finite number are positive. It is easy to see that forN ≥ 2
(i.e., when both roots of the equationt2−Nt+ 1= 0 are real and positive) all coefficients
of the series(1− Nt+ t2)−1 are positive. By the change of variablest �→ −t this implies
that the series(1−Nt+ t2)−1 is alternating forN ≤ −2. It is also easy to see directly that
for N = ±1 orN = 0 this series still has infinitely many negative coefficients. Hence, (i)
implies thatM > 0 andN ≥ 2. The same argument shows that (ii) implies (i)′. �

Proposition 3.3. Let F : Db(X) → Db(X) be an autoequivalence withπ(F) = g ∈
SL2(Z), F be a stable object ofDb(X). Then the following conditions are equivalent:

(i) Fn(F) �� F for n > 0 andHom(F, Fn(F)) �= 0 for all sufficiently large n;
(ii) g has positive real eigenvalues, M = χ(F, F(F)) > 0, and there existsθ ∈ R ∪ {∞}

such that F preservesCθ.

Under these conditions the Hilbert series ofAF,F is equal to

HAF,OX
(t) = 1+ Mt

1− Nt+ t2
,

whereN = tr(g). Also, if (θ,1) ∈ R2 is an eigenvector of g then F preserves the subcategory
Cθ ⊂ Db(X) (if (1,0) is an eigenvector then we setθ = ∞).
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Proof. (i) ⇒ (ii). Note that for every pair of nonisomorphic stable objectsG,G′ ∈ Db(X)

the graded space Hom•(G,G′) is always concentrated in one degree. Hence, (i) implies that
χ(F, Fn(F)) = χ(v0, g

nv0) > 0 for all sufficiently largen, wherev0 = vF ∈ Z2. By
Lemma 3.2this implies thatg has positive eigenvalues and thatM > 0. Also, from the
proof of this lemma we obtain the formula for the Hilbert series ofAF,F. Now letu ∈ R2 be
an eigenvector ofg. Rescalingu we can assume that eitheru = (θ,1) or u = (1,0). In the
latter case we setθ = ∞. In either case we haveg(θ) = θ under the fractional-linear action.
Therefore, byProposition 2.6we haveF(Cθ) = Cθ[m] for somem ∈ Z. SinceF belongs to
Cθ[i] for somei ∈ Z, the nonvanishing of Hom(F, Fn(F)) for n 0 implies thatm = 0.

(ii) ⇒ (i). Let us consider vectors

vn = vFn(F) = gnv0 ∈ Z2 ⊂ R2.

Sinceχ(v0, v1) = M > 0, it follows thatχ(vn, vn+1) > 0 for alln ≥ 0. Letm be an integer
such thatF ∈ Cθ[m]. Then all the vectorsvn belong to the closed half-plane(−1)mHθ ⊂ R2

(seeProposition 2.5). Hence,χ(vi, vj) ≥ 0 for i < j. Moreover, for a pair of stable objects
G,G′ ∈ Cθ the vectorsvG andvG′ can be proportional only ifvG = vG′ . Hence, we have
χ(vi, vj) > 0 for i < j. It remains to applyLemma 2.7. �

Remark 3.4.

1. It is easy to deduce from the proof that for a pair(F,F) such thatg = π(F) ∈ SL2(Z)

has positive real eigenvalues andM > 0, the conditions of the above proposition will be
satisfied for(F [n],F) for somen ∈ 2Z.

2. If F satisfies the equivalent conditions of the above proposition,g has two distinct
eigenvalues and(θ1,1), (θ2,1) are the corresponding eigenvectors, thenF preserves
both subcategoriesCθ1 andCθ2. Hence,F also preservesCθ1 ∩ Cθ2. Moreover, it is easy
to see thatCθ1 ∩ Cθ2 is a “half” of the naturalF -invariant torsion theory in each of the
categoriesCθ1, Cθ2 and that these categories are tiltings of each other with respect to
these torsion theories.

One can rewrite the Hilbert series ofAF,F as follows:

HAF,F(t) =
1+ (M −N)t + t2

1− Nt+ t2
.

In particular, we notice that the seriesHAF,F(−t)−1 has similar form but withN andM−N
switched. Recall that if a graded algebraA is Koszul then one hasHA! (t) = HA(−t)−1,
whereA! is the Koszul dual algebra. Below we will show that under appropriate conditions
the algebraAF,F is Koszul with the dual also of the formAF ′,F.

3.3. Koszul duality

For every stable objectF ∈ Db(X) we denote byRF the right twist corresponding toF.
This is an autoequivalence onDb(X) such that one has exact triangles

G→ Hom•(G,F)∗ ⊗ F→ RFG→ G[1]
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for all G ∈ Db(X) (see[18]; our notation is slightly different). The quasi-inverse autoequiv-
alence is the left twistLF, such that one has an exact triangle

LF(G)→ Hom•(F,G)⊗ F→ G→ LF(G)[1].

Theorem 3.5. Let (F,F) be a pair satisfying the equivalent conditions ofProposition 3.3.
Let π(F) = g ∈ SL2(Z), N = tr(g), M = χ(F, F(F)), and letA = AF,F be the corre-
sponding graded algebra. Then

(a) A is generated byA1 overA0 = k if and only ifM ≥ N + 1, or M = N and

detF2(F) �� (detF(F))N ⊗ det(F)−1;
(b) A is a quadratic algebra if and only ifM ≥ N + 2, or M = N + 1 and

detF3(F) �� (detF2(F))N+1⊗ (detF(F))−N−1⊗ det(F);
(c) A is Koszul if and only ifM ≥ N + 2. Moreover, in this case one has the following

isomorphism for the quadratic dual algebra:

A! � ARF◦F−1,F.

Let (r, r−1) be the eigenvalues ofg and let(u, u′) be the corresponding eigenvectors, so
that gu = ru, gu′ = r−1u′. Let u∗ : R2 → R be the functional defined byu∗(u) = 1,
u∗(u′) = 0. We can chooseu in such a way thatu∗(v0) > 0, wherev0 = vF (note that
v0 cannot be an eigenvector ofg sinceM = χ(v0,gv0) > 0). Consider the half-plane
H = {v ∈ R2|u∗(v) > 0}. Let C = Cθ[m] for appropriateθ ∈ R ∪ {∞} andm ∈ Z, so
thatF ∈ C and the vectors(vG,G ∈ C) belong to the closure ofH . ThenF preservesC (see
Proposition 3.3). For an objectG of Db(X) we set

rkC(G) = u∗(vG)
u∗(v0)

,

so that rkC(G) ≥ 0 for all G ∈ C. From the definition ofu∗ we immediately derive that

rkC(F(G)) = r · rkC(G).
Note thatC contains the subcategory equivalent to the category of stable bundles on a
noncommutative 2-torus and rkC is proportional to the rank function on such bundles. Let
us denoteFn = Fn(F) ∈ C. Since rkC(F) = 1, we obtain that

rkC(Fn) = rn.

To prove the above theorem we are going to use the twist functorsRFn : Db(X)→ Db(X).
More precisely, let us consider the objects

F′n := RFnRFn−1 · · ·RF1(F0) ∈ Db(X),

wheren > 0. It is convenient to extend this definition ton = 0 by settingF′0 = F0. As
we will see, the properties of the algebraA depend on whether some (or all)F′n belong
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to the subcategoryC and also on the vanishing of some (or all) spaces Hom1(F′n,Fm) for
n < m.

Lemma 3.6. Consider the following generating series

F(t, u) =
∑

n≥0,k≥0

χ(F′n,Fn+k+1)t
nuk, R(t) =

∑
n≥0

rkC(F
′
n)t

n.

Then one has

F(t, u) = M(1+ tu)

(1− Nu+ u2)(1− (M −N)t + t2)
, R(t) = 1+ r2t

1− (M −N)rt + r2t2
.

Proof. By the definition ofF′n we have an exact triangle

F′n−1→ Hom•(F′n−1,Fn)
∗ ⊗ Fn→ F′n→ F′n−1[1]. (3.1)

This implies the following relations:

χ(F′n,Fm) = χ(F′n−1,Fn)χ(Fn,Fm)− χ(F′n−1,Fm), m > n ≥ 1,

rkC(F
′
n) = χ(F′n−1,Fn)r

n − rkC(F
′
n−1), n ≥ 1.

Note thatχ(Fn,Fm) = χ(F0,Fm−n) for m > n is a coefficient of the Hilbert series ofA:

H(t) = 1+
∑
n≥1

χ(F0,Fn)t
n.

Therefore, denoting

F0(t) = F(t,0) =
∑
n≥0

χ(F′n,Fn+1)t
n,

we obtain the equations

(u+ t)F(t, u) = H(u)(1+ tF0(t))− 1, R(t) = 1+ rtF0(rt)− tR(t).

Substitutingu = −t into the first equation we get

F0(t) = H(−t)−1− 1

t
,

and therefore,

F(t, u) = H(u)H(−t)−1− 1

u+ t
, R(t) = H(−rt)−1

1+ t
.

It remains to use the formula

H(t) = 1+ (M −N)t + t2

1− Nt+ t2

that was proven inProposition 3.3. �
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Proof of Theorem 3.5.

(a) If the mapA1⊗A1→ A2 is surjective thenM2 = (dimA1)
2 ≥ dimA2 = MN, hence

M ≥ N.
Conversely, assume thatM ≥ N. Then we claim thatF′1 ∈ Cand Hom1(F′1,Fm) = 0

for m > 2. Indeed, sinceF′1 = RF1(F0), it is a stable object ofDb(X). Hence, the
exact triangle(3.1) for n = 1 implies that eitherF′1 ∈ C or F′1 ∈ C[1]. To check that
F′1 ∈ C it suffices to prove the inequality rkC(F′1) > 0. But

rkC(F
′
1) = Mr − 1= (M −N)r + r2 ≥ r2 > 0,

which proves our first claim (we used the equalityN = r + r−1). On the other hand,
sinceF′1 andFm are both stable objects ofC, the vanishing of Hom1(F′1,Fm) would
follow from the inequalityχ(F′1,Fm) > 0 (seeLemma 2.7). FromLemma 3.6we get∑

k≥0

χ(F′1,Fk+2)u
k = ∂F

∂t
(0, u) = M(M −N + u)

1− Nu+ u2
.

The latter series has positive coefficients except maybe for the constant term. Hence,
Hom1(F′1,Fm) = 0 form > 2. Now from the exact sequence

0→ Hom0(F′1,Fm)→ Hom0(F0,F1)⊗ Hom0(F1,Fm)

→ Hom0(F0,Fm)→ Hom1(F′1,Fm), (3.2)

we derive the surjectivity of the mapA1 ⊗ Am−1 → Am for m > 2. In the case
M > N the above argument shows that Hom1(F′1,F2) = 0, hence in this case the map
A1 ⊗ A1 → A2 is also surjective. On the other hand, ifM = N thenvF′1 = vF2, so
either Hom•(F′1,F2) = 0, orF′1 � F2. Hence, in this case the mapA1 ⊗ A1 → A2
is surjective if and only if det(F′1) �� det(F2). Using the triangle(3.1) we get that
det(F′1) � det(F1)

N ⊗ det(F0)
−1 which leads to the condition in the formulation of

part (a).
(b) By the result of part (a) we can assume thatA is generated byA1. The statement that

the algebraA is quadratic is equivalent to surjectivity of the natural maps

Am−2⊗ I → ker(Am−1⊗ A1→ Am) (3.3)

for all m ≥ 3, whereI = ker(A1⊗A1→ A2) is the space of quadratic relations. From
the exact sequences(3.2)above we see thatI can be identified with Hom0(F′1,F2) and
that the map(3.3)can be identified with the natural map

Hom0(F2,Fm)⊗ Hom0(F′1,F2)→ Hom0(F′1,Fm), m ≥ 3.

Now the exact triangle(3.1) for n = 2 shows that the kernel and the cokernel of this
map are Hom0(F′2,Fm) and Hom1(F′2,Fm), respectively (we use the facts aboutF′1
proven in part (a)). Therefore, to prove that the algebraA is quadratic it suffices to show
that Hom1(F′2,Fm) = 0 form ≥ 3.

The same argument as in (a) shows that eitherF′2 ∈ C or F′2 ∈ C[1]. Moreover, we
have

rkC(F
′
2) = ((M −N)2− 1)r2+ (M −N)r3,
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so forM ≥ N + 1 we have rkC(F′2) > 0, henceF′2 ∈ C. On the other hand, using
Lemma 3.6we get

∑
k≥0

χ(F′2,Fk+3)u
k = (M −N)2− 1+ (M −N)u

1− Nu+ u2
.

Thus, ifM−N ≥ 2 thenχ(F′2,Fm) > 0 for allm ≥ 3. SinceF′2 is a stable object ofC,
this implies the required vanishing of Hom1(F′2,Fm). If M = N+1 thenχ(F′2,Fm) >
0 for m ≥ 4 whileχ(F′2,F3) = 0. Hence, in this case Hom1(F′2,Fm) = 0 for m ≥ 4
and either Hom•(F′2,F3) = 0 or F′2 � F3. The latter isomorphism occurs exactly
when det(F′2) � det(F3). It remains to use(3.1) to get an isomorphism

det(F′2) � det(F2)
N+1⊗ det(F′1)

−1 � det(F2)
N+1⊗ det(F1)

−N−1⊗ det(F0).

Conversely, if the algebraA is quadratic then

χ(F′2,F3) = Mχ(F′1,F2)− χ(F′1,F3) ≥ 0,

hence(M − N)2 ≥ 1. Since we already know thatM − N ≥ 0 this implies that
M −N ≥ 1.

(c) If the algebraA is Koszul then its Hilbert seriesH(t) has the property thatH(−t)−1 has
nonnegative coefficients. But

H(−t)−1 = 1+ Nt+ t2

1− (M −N)t + t2
= 1+ Mt

1− (M −N)t + t2
,

so this series has nonnegative coefficients only ifM −N ≥ 2.
Conversely, assume thatM − N ≥ 2. We claim that all the objectsF′n belong to
C and that Hom1(F′n,Fm) = 0 for m > n. We argue by induction. Assume that the
assertion is true forn− 1. Looking at the exact triangle(3.1)we conclude as in part (a)
that eitherF′n ∈ C or F′n ∈ C[1]. Since byLemma 3.6we also have rkC(F′n) > 0 this
implies thatF′n ∈ C. On the other hand, the same Lemma shows thatχ(F′n,Fm) > 0
for m > n. By Lemma 2.7this implies the vanishing of Hom1(F′n,Fm) for m > n.

Now let us set

Kn := ⊕
m>n

Hom0(F′n,Fm).

ThenKn has a natural structure of (graded) leftA-module and from(3.1) we deduce
the following exact sequences ofA-modules:

0→ Kn→ A(−n)⊗ Hom(F′n−1,Fn)→ Kn−1→ 0, n ≥ 1,

whereA(−n) is the freeA-module with one generator in degreen. SinceK0 is the aug-
mentation idealA+ ⊂ A, putting these sequences together we obtain a free resolution
of the trivial modulek of the form

· · · → A(−n)⊗ Hom(F′n−1,Fn)→ · · · → A(−1)⊗ Hom(F′0,F1)→ A.

This implies thatA is Koszul andA!
n � Hom(F′n−1,Fn)

∗ for n ≥ 1.
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To prove the last statement of the theorem we observe that the exact triangle(3.1)
shows that

A!
n � Hom(F′n−1,Fn)

∗ � Hom(Fn,F
′
n).

SinceRFn � FnRFF
−n, we also have

F′n � Fn(RFF
−1)n(F).

Therefore,

A!
n � Hom(Fn,F

′
n) � Hom(F, (RFF

−1)n(F)).

It is easy to check that this isomorphism is compatible with the multiplication onA!

and onARFF
−1,F. �

Example 3.7.

1. If αF = 1 then byProposition 2.3part (b) of the above theorem states thatAF,F is
quadratic iffM ≥ N + 2. For example, this is the case forF = (⊗L), whereL is
a line bundle. This leads to the well-known statement that the corresponding algebra
AF,OX = ⊕n≥0H

0(X,Ln) is quadratic iff deg(L) ≥ 4 (then it is also Koszul). More
generally, ifF = (⊗L) ◦ σ∗, whereσ is an automorphism ofX, thenAF,OX is the
so-called twisted coordinate algebra attached to the pair(L, σ). Such algebras were
considered in[1]. For example, ifσ is a translation then such an algebra is quadratic iff
deg(L) ≥ 4, in which case it is also Koszul.

2. Consider the caseM = N + 1, αF = −1. Then the algebraA is often quadratic but
never Koszul. The quadratic dual hasA!

3 = 0. For example, ifL is a line bundle of
degree 3 such that [−1]∗L ⊗ L−1 is not of order 2, then these conditions are satisfied
for F = (⊗L) ◦ [−1]∗. The corresponding algebra is

A = k ⊕H0(L)⊕H0(L⊗ [−1]∗L)⊕H0(L⊗ [−1]∗L⊗ L)⊕ · · ·
with the multiplication rulef ∗ g = f [(−1)deg(f)]∗g.

3. If M = N + 1 andαF = 1 then the algebraA is not quadratic: one has to add one cubic
relation to the quadratic relations.

The following result allows to check under what conditionsTheorem 3.5can be applied
to sufficiently high powers of a given autoequivalence.

Proposition 3.8. Assume that an elementg ∈ SL2(Z) has positive real eigenvalues and
that the vectorv ∈ Z2 \ {0} satisfiesM := χ(v,gv) > 0. Then the following conditions are
equivalent:

(i) χ(v, gnv)− tr(gn)→+∞ asn→+∞;
(ii) χ(v, gnv)− tr(gn) ≥ 0 for somen > 0;

(iii) M > r1− r2, wherer1 ≥ r2 are eigenvalues of g;
(iv) either g is unipotent, or M ≥ N, whereN := tr(g).
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Proof. Note that byLemma 3.2we haveχ(v, gnv) > 0 for all n > 0. Moreover, from the
proof of that Lemma we get∑

n≥1

χ(v, gnv)tn = Mt

1− Nt+ t2
.

If g is unipotent then we haveN = tr(gn) = 2, whileχ(v, gnv) = nM, so the assertion is
clear.

Now assume thatg has two distinct eigenvaluesr > r−1 > 0. Then from the above
formula we get

χ(v, gnv) = M
rn − r−n

r − r−1
.

On the other hand, tr(gn) = rn + r−n. Using these formulas it is not difficult to show the
equivalence of (i)–(iv). Indeed, clearly, (i) implies (ii). The implication (ii)⇒ (iii) follows
immediately from the chain of inequalities

Mrn

r − r−1
>

M(rn − r−n)
r − r−1

≥ rn + r−n > rn.

To prove (iii)⇒ (iv) we note thatr − r−1 = √N2− 4. Thus, the inequalityM > r − r−1

implies thatM2 > N2 − 4, henceM ≥ N (sinceN ≥ 3 in our case). Finally, ifM ≥ N

thenM > r − r−1, in which caseχ(v, gnv) − tr(gn) → +∞ asn → +∞. This proves
(iv)⇒ (i). �

4. Ampleness and noncommutative Proj

4.1. Ampleness criterion

Let A be a gradedk-algebra of the formA = ⊕i≥0Ai, whereA0 = k. Recall that a
finitely generated right gradedA-moduleM is calledcoherentif for every finite collection
of homogeneous elementsm1, . . . , mn ∈ M the (right)A-module of relations between
m1, . . . , mn is finitely generated. Coherent modules form an Abelian subcategory in the
category of all modules. An algebraA is called right coherent if it is finitely generated
and is coherent as a right module over itself. We denote by cohprojA the quotient of the
category of coherentA-modules by the Serre subcategory of bounded coherent modules.
Below we are going to show that the categoriesCθ, whereθ is a quadratic irrationality (or a
rational number), are equivalent to such quotient categories for appropriate algebras of the
formAF,F.

LetCbe an Abelian category equipped with an autoequivalenceF : C→ C. For simplicity
we will assume thatF is an automorphism ofC (the general case can be reduced to this one,
see[2]). Under appropriate ampleness assumptions the categoryC can be recovered from the
algebraAF,O, whereO is an object ofC. Recall (see[13,19]) that a sequence(On, n ∈ Z)

of objects ofC is calledampleif the following two conditions hold: (i) for every surjection
X→ Y in C the induced map HomC(On,X)→ HomC(On, Y) is surjective for alln # 0;
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(ii) for every objectX ∈ C and everyn ∈ Z there exists a surjection⊕s
j=1Oij → X, where

ij < n for all j. The main theorem of[13] implies that if the sequence(FnO, n ∈ Z) is
ample then the algebraAF,O is right coherent and the categoriesC and cohprojAF,O are
equivalent. Similar result for Noetherian categories was proven by Artin and Zhang[2].
The following proposition shows that we do need a more general theorem of[13], since for
irrationalθ the categoriesCθ are not Noetherian.

Proposition 4.1. Assume thatθ is irrational. Then every nonzero object inCθ is not Noethe-
rian.

Proof. It suffices to prove that every stable objectF ∈ Cθ is not Noetherian. Recall that
the vectorvF = (deg(F), rk(F)) ∈ Z2 satisfies deg(F) − rk(F)θ > 0. Moreover, sinceF
is stable, the numbers deg(F) and rkF are relatively prime. Let(m, n) be the unique pair
of integers such thatm rk(F)− ndeg(F) = 1 and 0< m− nθ < deg(F)− rk(F). There
exists a stable objectF′ ∈ Cθ with vF′ = (m, n) (seeProposition 2.5). By Lemma 2.7one
has dim Hom(F,F′) = 1 and Hom1(F,F′) = 0. This implies that there is an exact triangle

F′[−1]→ LF(F
′)→ F→ F′ → · · · ,

whereLF is the left twist functor corresponding toF. Note that the objectLF(F′) is stable,
so eitherLF(F′) ∈ Cθ, or LF(F′) ∈ Cθ[−1]. But the vectorvLF(F′) = vF − v′F lies in
the half-plane{(x, y)|x − yθ > 0}, henceLF(F′) is in Cθ. This means thatF′ is a proper
quotient-object ofF in Cθ. Iterating this procedure we will obtain an infinite sequence
F→ F1→ F2→ · · · , whereFn+1 is a proper quotient ofFn. �

The following theorem gives a criterion of ampleness for sequences of the form(FnF, n ∈
Z) in the categoriesCθ.

Theorem 4.2. Let F : Db(X) → Db(X) be an autoequivalence such that the element
g = π(F) ∈ SL2(Z) has distinct positive real eigenvalues. Letu = (x, y) ∈ R2 be an
eigenvector of g with the eigenvalue< 1 and letθ = x/y (if y = 0 thenθ = ∞). LetF0 be
a stable object ofCθ and letv0 = (degF0, rkF0) be the corresponding primitive vector in
Z2.Assume thatF(F0) ∈ Cθ.Denote alsoN = tr(g)andM = χ(F0, F(F0)) = χ(v0,gv0).

(a) If M ≥ N − 1 then the sequence(Fn(F0), n ∈ Z) in Cθ is ample.
(b) If 0 < M < N−1 then the algebraAF,F0 is not finitely generated, hence, the sequence

(Fn(F0)) is not ample.

Proof. Below we will denote the coordinates of a vectorv ∈ R2 by (deg(v), rk(v)). Let us
denoteFn = Fn(F0), vn = vFn = gnv0. By Proposition 2.6one hasF(Cθ) = Cθ[m] for
somem ∈ Z. Hence, our assumptionF(F0) ∈ Cθ implies thatF(Cθ) = Cθ. In particular,
Fn ∈ Cθ for all n ∈ Z.

(a) Assume first thatM ≥ N. Note thatv0 is not an eigenvector ofg, so we can choose
u in such a way thatχ(u, v0) > 0. Thenχ(u, vn) > 0 for all n ∈ Z. Moreover, since
χ(g−1v0, v0) > 0 and sinceu is an eigenvector ofg−1 with the eigenvalue> 1, it
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follows that deg(vn)/rk(vn) tends toθ asn → −∞. Observe also that all the vectors
{vF,F ∈ Cθ} lie in the half-planeH = {v : χ(u, v) > 0} (sinceθ is irrational). It
suffices to prove that for everyF ∈ Cθ the following holds:

(i) Hom1(Fn,F) = 0 for n# 0;
(ii) the natural map Hom(Fn,F)⊗ Fn→ F is surjective forn# 0.

Moreover, it is enough to check these statements for stableF. Also, for (ii) it is
enough to prove thatLFn(F) is in Cθ for n # 0, whereLFn is the left twist functor
associated withFn. Since the vectorsvn lie in the half-planeH , χ(vn−1, vn) > 0 and
deg(vn)/rk(vn) → θ asn → −∞, it follows that for every vectorv in H one has
χ(vn, v) > 0 for n << 0. ApplyingLemma 2.7to Fn and a stable objectF ∈ Cθ we
immediately derive (i). It remains to prove that for suchF one hasLFn(F) ∈ Cθ for
n# 0. SinceLFn(F) is a stable object that fits into an exact triangle

F[−1]→ LFn(F)→ Hom(Fn,F)⊗ Fn→ F,
it suffices to prove thatvLFn (F) belongs toH . But

vLFn (F) = χ(Fn,F)vn − vF = χ(vn, vF)vn − vF,

so

χ(u, vLFn (F)) = χ(vn, v)χ(u, vn)− χ(u, v),

wherev = vF.
Let r < 1 be the eigenvalue ofg corresponding tou and letu′ be the eigenvector

corresponding tor−1. Rescalingu andu′ we can assume thatv0 = u + u′. Then
vn = rnu+ r−nu′, χ(u, vn) = r−nχ(u, u′) > 0 and

χ(vn, v) = rnχ(u, v)+ r−nχ(u′, v).

It follows that

χ(u, vLFn (F)) = (∆− 1)χ(u, v)+ r−2n∆χ(u′, v),

where∆ = χ(u, u′). Sinceχ(u, v) > 0, this quantity is positive forn # 0 provided
that∆ > 1. But

∆ = χ(v0,gv0)

r−1− r
≥ r + r−1

r−1− r
> 1,

where we used our assumptionM ≥ N.
Now let us consider the caseM = N − 1. The condition (i) is still satisfied, however

(ii) has to be replaced by a weaker condition. For everyF ∈ Cθ andn ∈ Z let us set

TnF := coker(Hom(Fn,F)⊗ Fn→ F).
It suffices to prove that for everyF we have

T−n+m · · · T−1+mTmF = 0
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for somem ∈ Z and somen > 0. As before we can assume thatF is a stable object in
Cθ. Using the action ofF we can reduce ourselves to the case when the vectorv = vF
satisfiesχ(v0, v) > 0. In this case we will show thatT−n · · · T−1T0F = 0 for some
n > 0. By Lemma 2.7, we have Hom1(F0,F) = 0, so there is an exact triangle

LF0(F)→ Hom(F0,F)⊗ F0→ F→ LF0(F)[1].

Lethi ∈ SL2(Z) be the matrix corresponding to the functorLFi [1] : Db(X)→ Db(X).
We claim that ifvLF0(F)[1] = h0(v)¬ ∈ H thenT0F = 0. Indeed, sinceLF0(F) is a

stable object, this would imply thatLF0(F) ∈ Cθ, so the map Hom(F0,F)⊗F0→ F
is surjective. Otherwise, we havevLF0(F)[1] ∈ H which implies thatLF0(F)[1] belongs

to Cθ, the map Hom(F0,F)⊗ F0→ F is injective with the cokernel

T0F � LF0(F)[1],

andvT0F = h0(v). Continuing to argue in this way we see that it is enough to show the
existence ofn > 0 such thath−n · · ·h−1h0(v)¬ ∈ H . Using the formulavLF0(F)[1] =
v− χ(v0, v)v0 we can write the matrix ofh0 with respect to the basis(u, u′):

h0 =
(

1+∆ −∆
∆ 1−∆

)
,

where∆ = χ(u, u′). Similarly,

h−i =
(
r−i 0

0 ri

)
h0

(
ri 0

0 r−i

)
.

Therefore,

h−n · · ·h−1h0 =
(
r−n+1 0

0 rn−1

)
Sn+1,

where

S =
(
r 0

0 r−1

)
h0 =

(
r(1+∆) −r∆
r−1∆ r−1(1−∆)

)
.

But det(S) = 1 and

tr(S) = r(1+∆)+ r−1(1−∆) = N + (r − r−1)∆ = N −M = 1.

Hence,S2 − S + 1 = 0 and thereforeS3 = −1. It follows thath−2h−1h0(v) is not in
H which finishes the proof.

(b) LetA = AF,F0. For a graded rightA-moduleM andn ∈ Z let us set

TnM := coker(Mn ⊗ A(−n)→ M),
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whereA(−n) is a freeA-module withA(−n)i = Ai−n. To show that the algebraA is
not finitely generated we have to show that for alln ≥ 1 one has

TnTn−1 · · · T1A≥1 �= 0,

whereA≥1 = ⊕i≥1Ai.
For everyF ∈ Cθ andn ∈ Z we set

Γ≥n(F) = ⊕
m≥n

Hom(F−m,F).

This space has a natural structure of a graded rightA-module. For example, we have
Γ≥n(F−n) = A(−n). Now we claim that it is enough to prove thath−nh−n+1 · · ·h−1(v0)

is a nonzero vector inH for all n ≥ 1, where we use the notation from the proof of part
(a). Indeed, as we have seen above this would imply that for everyn ≥ 1 the object
T−nT−n+1 · · · T1F0 is stable and that we have exact sequences

0→ Hom(F−n, T−n+1 · · · T1F0)⊗ F−n→ T−n+1 · · · T1F0

→ T−nT−n+1 · · · T1F0→ 0

in Cθ. Using these exact sequences andLemma 2.7one can easily see that

Γ≥n+1(T−nT−n+1 · · · T1F0) � TnTn−1 · · · T1A≥1.

Again applyingLemma 2.7we conclude that this space is not zero for everyn ≥ 1
which proves our claim.

To prove thath−n · · ·h−1(v0) is a nonzero vector inH it suffices to show that
Sn(R>0u + R>0u

′) ⊂ H for all n ≥ 1. Note that tr(S) = N − M ≥ 2, soS has
real positive eigenvalues. Sinceχ(u,Su) = r−1∆2 > 0, it is enough to prove that here
exists an eigenvector ofS of the form−xu+u′, wherex > 0. Equivalently, the equation

χ(−xu+ u′, S(−xu+ u′)) = r−1∆x2+ [r(1+∆)− r−1(1−∆)]x+ r∆ = 0

should have a positive root. For this two inequalities should hold:D = b2 − 4∆2 ≥ 0
andb < 0, whereb = r(1+∆)− r−1(1−∆). But

b = r − r−1+N∆ = NM

r−1− r
− r−1+ r = NM−N2+ 4

r−1− r
< 0

sinceM ≤ N − 2 andN > 2. Finally,

D = (r − r−1+N∆)2− 4∆2 = N2− 4− 2NM+ (N2− 4)∆2

= N2− 4− 2NM+M2 ≥ 0

sinceN −M ≥ 2. �

Remark 4.3. If the equivalent conditions of the above theorem are satisfied then we also
haveFn(F0) ∈ Cθ′ for all n, where(θ′,1) is the eigenvector ofg corresponding to the
eigenvalue> 1. The sequence(Fn(F0)) is not ample inCθ

′
, since there are objectsF ∈ Cθ′

with Hom1(Fn(F0),F) �= 0 and Hom(Fn(F0),F) = 0 for all n # 0. Nevertheless, we



A. Polishchuk / Journal of Geometry and Physics 50 (2004) 162–187 185

still have an equivalence of the derived category ofCθ
′
with the derived category of cohproj

AF,F, since both categories are equivalent toDb(X). It would be interesting to find a general
framework for this kind of equivalences associated with nonample sequences.

Corollary 4.4. Let (F,F) be a pair satisfying the equivalent conditions ofProposition 3.3
and letπ(F) = g ∈ SL2(Z),N = tr(g),M = χ(F, F(F)). Then the algebraAF,F is finitely
generated if and only ifM ≥ N − 1.

Proof. If g has distinct eigenvalues then this follows fromTheorem 4.2. Now assume thatg
is unipotent (so thatN = 2). Then the statement reduces to the case whenF is a composition
of the tensoring by a line bundleL with an automorphism ofX. In this case we can assume
thatF ∈ CohX. SinceM ≥ 1 it follows thatF is a vector bundle and deg(L) ≥ 1. It easy
to see that in this case the sequence(Fn(F)) is ample, hence, the algebraAF,F is finitely
generated. �

4.2. Projectivity ofCθ

Now we can show that every categoryCθ, whereθ is a quadratic irrationality, can be
described as a “noncommutative Proj”.

Theorem 4.5. For every quadratic irrationalityθ ∈ R there exists an autoequivalence
F : Db(X) → Db(X) preservingCθ and a stable objectF ∈ Cθ such that the sequence
(FnF, n ∈ Z) is ample. Hence, the corresponding algebraAF,F is right coherent and
Cθ � cohprojAF,F.

Proof. Let αθ2 + βθ + γ = 0 be the equation satisfied byθ, whereα, β, γ ∈ Z, α > 0.
Consider the ringR = Z[αθ] ⊂ Q(θ). ThenR is contained inZ + Zθ andR(Z + Zθ) ⊂
Z + Zθ. Let r ∈ R∗ be a unit such that 0< r < 1 (such a unit always exists). Then the
multiplication by r induces an invertible operator onZ + Zθ with determinant equal to
Nm(r) = 1. Hence, we haver = cθ + d, rθ = aθ + b for some

g =
(
a b

c d

)
∈ SL2(Z).

Thenu = (θ,1) ∈ R2 is an eigenvector ofg corresponding to the eigenvaluer. We claim
that there exists a primitive vectorv ∈ Z2 such thatχ(u, v) > 0 andχ(v,gv) ≥ tr(g).
Indeed, letu′ ∈ R2 be an eigenvector ofg corresponding to the eigenvaluer−1 and such
thatχ(u, u′) > 0. We can find a primitive vectorv ∈ Z2 such thatv = xu+ yu′, where
x > 0, y > 0, andxy≥ (r + r−1)/(r−1− r)χ(u, u′)). Thenχ(u, v) = yχ(u, u′) > 0 and

χ(v,gv) = χ(xu+ yu′, xru+ yr−1u′) = xy(r−1− r)χ(u, u′) ≥ r + r−1

as required. It remains to choose an autoequivalenceF with π(F) = g such thatF preserves
Cθ and an objectF ∈ Cθ with vF = v, and then applyTheorem 4.2. �
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Finally, we are going to show that the categoryCθ for arbitraryθ ∈ R can be represented
in the form cohprojA for some coherentZ-algebraA. Recall that the notion ofZ-algebra
is a natural generalization of the notion of graded algebra (see[4,13]): such an algebra is
equipped with a decompositionA = ⊕i≤jAi,j and the case of a graded algebra corresponds
to Ai,j = Aj−i. As in the case of real multiplication considered above, it is enough to
construct an ample sequence(Fn, n ∈ Z) of objects inCθ, however, not necessarily of the
formFn = Fn(F0) for some autoequivalenceF . Then the main theorem of[13] will give an
equivalenceCθ � cohprojA, whereA is theZ-algebra associated with the sequence(Fn),
so thatAi,j = Hom(Fi,Fj). The construction of the following theorem provides plenty of
ample sequences inCθ.

Theorem 4.6. For everyθ ∈ R there exists an ample sequence(Fn, n ∈ Z) in Cθ such that
all the objectsFn are stable.

Proof. Clearly, it suffices to consider the case whenθ is irrational. Recall that all vectorsvF
for F ∈ Cθ belong to the half-planeH = Hθ = {(x1, x2)|x1 − θx2 > 0} ⊂ R2. Moreover,
for every primitive vectorv ∈ H ∩ Z2 there exists a stable objectF ∈ Cθ with vF = v.
Now let us choose a sequence of primitive vectorsvn = (dn, rn) ∈ H ∩Z2 such thatrn > 0
for n # 0 and limn→−∞µn = θ, whereµn = dn/rn. In other words, we want the ray
R≥0vn to approachR≥0(θ,1) asn → −∞. Note that sincedn − θrn > 0 we necessarily
haveµn > θ for n # 0. In addition we can make this choice in such a way that for all
n # 0 one hasµn − θ ≥ r−1

n . Indeed, we can first choosern for n # 0 to be a sequence
of prime numbers such that limn→−∞rn = +∞. Then after picking any sequencedn such
that limn→−∞dn/rn = θ we can changedn by dn + 1 if necessary to makeµn − θ ≥ r−1

n

for n# 0. Sinceθ is not an integer anddn/rn tends toθ asn→ −∞, such a change will
leavedn prime torn.

Now we claim that if(Fn, n ∈ Z) is any sequence of stable objects inCθ with vFn = vn
then conditions (i) and (ii) from the proof ofTheorem 4.2are satisfied for every stable
F ∈ Cθ, and therefore the sequence(Fn) is ample. Indeed, condition (i) follows from
Lemma 2.7since for everyv ∈ H one hasχ(vn, v) > 0 for n << 0. Arguing in the same
way as in the proof ofTheorem 4.2we conclude that it is enough to prove that for every
v ∈ H ∩ Z2 one hasχ(vn, v)vn − v ∈ H for n# 0. Letv = (d, r). Then we have to show
that

(drn − dnr)dn − d − θ[(drn − dnr)rn − r] > 0

for n # 0. Assume first thatr �= 0 and setµ = d/r. Then the above inequality can be
rewritten as

rr2
n(µ− µn)(µn − θ) > r(µ− θ).

Note thatr(µ − µn) = χ(vn, v)/rn > 0 for n # 0. Hence, our inequality forn # 0 is
equivalent to

r2
n(µn − θ) >

µ− θ

µ− µn

.
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But this follows from the condition thatµn − θ ≥ r−1
n sincern → +∞ asn → −∞.

Similar argument works in the caser = 0. �
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