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Abstract

We define analogues of homogeneous coordinate algebras for noncommutative two-tori with
real multiplication. We prove that the categories of standard holomorphic vector bundles on such
noncommutative tori can be described in terms of graded modules over appropriate homogeneous
coordinate algebras. We give a criterion for such an algebra to be Koszul and prove that the Koszul
dual algebra also comes from some noncommutative two-torus with real multiplication. These
results are based on the techniques of [Categories of holomorphic bundles on honcommutative
two-tori. math.AG/0211262] allowing to interpret all the data in terms of autoequivalences of the
derived categories of coherent sheaves on elliptic curves.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Noncommutative algebraic geometry is usually understood as the study of certain Abelian
categories replacing the usual category of (quasi-)coherent sheavd®,(s:&6). For
example, noncommutative projective schemes correspond to certain categories defined in
terms of modules over graded algebras in the way analogous to Serre’s theorépj)(see
However, it is rather disappointing that at present there is almost no connection between
noncommutative algebraic varieties o¢&and honcommutative topological spaces, which
according to Connef$] are described bg*-algebras. One of the indications that such a
connection exists is provided by the wdi, where Sklyanin algebras are related to some
noncommutative manifolds. In the present paper we give another example of a relation of
this kind. Namely, we show that noncommutative two-tori admitting “real multiplication”
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(i.e., nontrivial Morita autoequivalences) can be considered as underlying noncommutative
topological spaces for certain noncommutative algebraic varieties.

This relation is not so surprising given the recent studies of complex geometry on non-
commutative two-tori (se3,14,17). It may only seem a little odd that real multiplication
is relevant for our picture. Let us briefly explain this. Recall that the homogeneous coordi-
nate algebra of a projective scheme is defined using tensor powers of an ample line bundle.
In noncommutative world one can only take tensor powers of a bimodule. Therefore, in
order to construct an analogue of such algebra for a noncommutative twofiombkere
0 € R, one has to find a bimodule over the ring of functionsZrwhich would be am-
ple in appropriate sense. The natural choice would be one of the so-called basic modules.
Now the Morita equivalence theory for noncommutative two-tori implies that an interesting
bimodule can be found among basic modules only when the paraéhiststabilized by
a nontrivial element of S§(Z)/{41} under the fractional-linear action of this group on
R U {oc}. In other words, the category of vector bundlesTgrshould have a nontrivial
Morita autoequivalence. Note however, that there exists a generalization of the standard
approach to noncommutative projective schemes in which graded algebras are replaced
by more general objects calléttalgebras (set,19]). If one allows these more general
noncommutative Z-projective schemes” then the condition tifathas real multiplication
becomes unnecessary.

The results of this paper depend heavily on the study of categories of holomorphic vector
bundles orfy in [14]. Recall thatirloc. cit.we considered only certain class of holomorphic
bundles oy that we calledstandardand we constructed a fully faithful functor from the
category of such bundles to the derived categ®tyX) of coherent sheaves on some elliptic
curve X. Moreover, we proved that the image of this functor consists of stable objects in
the hear? of certain nonstandardstructure onD?(X) associated witld (see 1.2; these
t-structures were defined [B]). We conjecture that every holomorphic bundlefris a
successive extension of standard holomorphic bundles. If true, this would imply an equiva-
lence ofc? with the category of all holomorphic bundles @in(for irrationald). Since we do
not know the validity of this conjecture, we simply replace the category of all holomorphic
bundles orfy by . This allows us to switch from the context of noncommutative complex
geometry orfy to the study of the-structure orD? (X) associated with. Nontrivial Morita
autoequivalences @} appearing wheéis a quadratic irrationality correspond to nontrivial
autoequivalences : D?(X) — DP(X) preserving the correspondimgtructure.

The graded algebras associated Witltan now be viewed as examples of the following
general construction. Given an additive categ@ran additive functoF : C — C and an
objectO of C, we define an associative graded ring

Aro = @ Home(O, F'(0)),
n>0

where(F" : C — C,n > 0) are the functors obtained by iteratidg(so F° = Id¢). The
multiplication is defined as the composition of the natural maps

Home(0, F™(0)) ® Home(O, F"(0))
— Home(F"(0), F™(0)) ® Home(0, F*(0)) — Home (0, F" 1 (0)).
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The homogeneous coordinate ring of a projective sch&nagpears as a particular case

of this construction whed is the category of coherent sheavesXonF is the functor of
tensoring with an ample line bundleon X, O = Oy is the structure sheaf. Slightly more
general rings are obtained when takifigo be of the formF(A) = L ® o*A, whereo is

an automorphism aoX. The corresponding rings are twisted homogeneous coordinate rings
considered inf1].

The example relevant for noncommutative tori with real multiplication is whenc? ¢
DP(X), whereX is an elliptic curve F is the autoequivalence @# (X) preserving’?. In
Section 3we study corresponding graded algebsasr, whereF is a stable object af’.
Namely, we compute the Hilbert seriesAf, r and formulate simple criterions in terms of
discrete invariants afF;, F) for the algebra i  to be generated in degree 1, to be quadratic,
and to be Koszul. We also observe thatif r is Koszul then the Koszul dual algebra is
again of the same form: it is isomorphic #5 .1 », WhereRx is certain twist functor
associated witlF (seeSection 3.3.

In Section 4ve prove that every catego@y, wheref is a quadratic irrationality, contains
anamplesequence of objects of the forh™ F), whereF : ¢’ — (? is an autoequivalence.
This means that’ can be recovered from the corresponding graded algépraby the
noncommutative analogue of Proj-construction considerd@]inOne technical point is
that the categorie& are non-Noetherian, so we have to apply the main resyit3jfthat
generalizes (a part of) the main theorenj2jfto non-Noetherian case.

It would be interesting to try to extend some of our results to more general algebras of
the form A . 7, whereF is an autoequivalence of the derived categbf(X) of coherent
sheaves on a smooth projective varigtyF is an object oD’ (X). The first natural question
is whether there are interesting examples wHesreserves somestructure onD?(X). In
the case wheiX is an Abelian variety one source of such examples should be given by
noncommutative tori generalizing the picture describefd 4j.

Another perspective for the future work is to try to connect our results with Manin’s
program in[11] to use noncommutative two-tori with real multiplication for the explicit
construction of the maximal Abelian extensions of real quadratic fields.

Convention With the exception oSection 3.1all the objects (varieties, categories) are
defined over an arbitrary field

2. Preliminarieson derived categories of elliptic curves
2.1. Structure of the group of autoequivalences

Let X be an elliptic curve, AutD? (X)) be the group of (isomorphism classes of) exact
autoequivalences db”(X). There is a natural surjective homomorphism
7 Aut(DP (X)) — SLa(Z),

defined by the ruler(F) = g € SL»(Z), such that for every objecf € D”(X) one has

degF(F) _ degF
krep | 8\ krE )
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For example, ifF is the functor of tensoring with a line bundlethen F projects to the
matrix

1 dedql)
0 1 '

LetS: D?(X) — DP(X) be the Fourier—Mukai transform considered as an autoequivalence
of D?(X) via the isomorphisnX ~ X. Then

S 0 -1

b = 1 0 .

The shift functorF — F[1] maps undetr to the matrix—id € SLz(Z). We denote by
Aut(X) the group of automorphisms &fpreserving the neutral element. It can be identified
with a subgroup of AutD? (X)): to every automorphism : X — X there corresponds an
autoequivalence, = (6~ 1)* : D*(X) — D’(X). Clearly, the homomorphisma is trivial

on this subgroup.
On the other hand, for every Abelian variefythere is a homomorphism

vx T Aut(D? (X)) — SpX x X),
where SpX x X) is the group osymplecti@utomorphisms ok x X, i.e. automorphisms

preserving the line bundlp],P ® p§37>*l on (X x X)2, whereP is the Poincaré line

bundle onX x X. The homomorphisnyyx was defined by Orloy12, Corollary 2.16] He
also proved that it fits into an exact sequence

1— (X x X)(k) x Z — Aut(D”(X)) 2 Spx x X) — 1,

where the subgroupX x X)(k) corresponds to functors of translation by pointsto&nd
of tensor products with line bundles in Bj&), while Z ¢ Aut(D?(X)) is the subgroup
of shifts A +— A[n]. More precisely, to a pointx, §) € (X x X) (k) one associates the
autoequivalence

Bip 1 DP(X) > DP(X) 1 Frs 1 (F) ® Plxxe,
wheret, : X — X denotes the translation by € X (k). The subgrougX x X)) c
Aut(D?(X)) is normal and the adjoint action @f € Aut(D?(X)) is given precisely by
yx (F) (seg[12, Corollary 2.13].

In the case of an elliptic curve we can identifywith X, so the group SgX x X) can be
identified with the group X x X) of matrices

a b
(£ 2)
with entries in the ring EndX) satisfying the equations
ad—cb=1  ad-bt=1  ac=ca,
bd =db,  ab=ba,  cd=dCc,

wheref — f is the Rosati involution on Eng).
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Lemma2.1. The groupSp(X x X) is isomorphic to(Aut(X) x SL(Z))/{+£1}, where the
subgroup{+1} is embedded diagonally

Proof. Note that for everya € Aut(X) one hasua = 1. Hence, AutX) embeds into
Sp(X x X) as the central subgroup of diagonal matrices

(62)

We have to prove that every element in(8px X) is a product of such a matrix with a
matrix in Sly(Z). If one of the entries of a matrix

@ P) Cspx x x
cdep(x)

is zero then this is easy. Assuming that all the entries are nonzero we note that the condition
ab € 7 implies thata € Qb. Therefore, we can write = a'r, b = b'r for somer e
End(X)q and a pair of relatively prime integefs’, b'). From the conditiom, b € End(X)

we immediately derive that € End(X). Using the conditiongic € Z, bd € Z we can

also writec = ¢’71,d = d'r1 for some rational numberg’, d'). Sincec, d, andr are
elements of En@dX) we obtain that’ andd’ are integers. The equatiad — cb = 1 implies

that the matrix

a b
<c’ d’)

belongs to Sk(Z). Finally, sincec’r~! € End(X) andd’7~1 € End(X) it follows that
7~1 € End(X), sor is a unit. O

Let us sefAut(D?(X)) = Aut(D?(X))/(X x X)(k). According to the above lemma the
homomorphisnyy induces a surjective homomorphism
vx P AUt(DP (X)) — (AutX x SLo(Z))/{+1}
with the kernelZ. The homomorphism also factors through a homomorphism
7 Aut(DP (X)) — SLa(Z).

It is easy to check that the homomorphisst(D? (X)) — SL»(Z)/{£1} induced by

yx andx differ by an automorphism of Si(Z). On the other hand, there is a natural
action of AutD? (X)) on Ko(X) that preserves the subgrop(X)o C Ko(X) consisting

of classes of zero degree and zero rank. Note that the determinant gives an isomorphism
det : Ko(X)o — Pic?(X). From this one can see that the action of @ft(X)) on Ko(X)o

factors througtAut(D’ (X)).

Theorem 2.2. There exists a homomorphisfut(D?(X)) — Aut(X) : F — ar, such
that

Fla) = ar(a)
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for everya € Ko(X)o. The induced homomorphism
Aut(D? (X)) — Aut(X) x SLo(Z) : F — (arF, 7(F))
fits into the exact sequence
1— 2Z — Aut(D’(X)) — Aut(X) x SLx(Z) — 1,

where2Z is the subgroup of even shifts— A[2n].

Proof. We have an exact sequence
1 Z — AU(D" (X)) /AUt(X)5SLa(Z) /{+1) — 1, 2.1)

where the homomorphismis induced byr, Z is the subgroup of shifts. Indeed, this follows
from the fact thatr differs from the homomorphism induced by by an automorphism
of SLy(Z)/{£1} and from the fact that kéyx) = Z. One consequence of this is that
Aut(D’ (X)) is generated by the subgroup AlY together with the shifd — A[1], the
tensoring functof(A) = AQ L, whereL is aline bundle of degree 1, and the Fourier—Mukai
transformsS. Since the action of all of these autoequivalencekg¢X) is known, we derive
that for everyF e Aut(D’(X)) there exists an automorphiss € Aut(X) such thatF
acts onKop(X)g in the same way asp. Similarly, we can consider the action &f on
Ko(X ®y k)o, Wherek is an algebraic closure @f The above argument shows that there
exists uniquer» defined ovek, such thatF acts onKo(X ®; k)o asar. Itis clear that the
homomorphisnF — «f restricts to the identity map on Att) ¢ Aut(D’(X)). Together
with surjectivity of = this immediately implies surjectivity of the map — (a g, n(F)).
The kernel of this map clearly contains the subgroup of even sHifts Z ¢ Aut(D”(X)).
Using the exact sequen¢2.1) one can easily see that this kernel coincides with 2 O

Let Aut(D?(X))° c Aut(Db(X)) (resp., AutD?(X))° c Aut(D?(X))) be the subgroup
consisting ofF with «r = 1. From the above theorem we get an exact sequence

1— 27 — Aut(D?(X))° — SLy(Z) — 1.

The following proposition can be viewed as an analogue of the theorem of the cube for
autoequivalences ab’(X).

Proposition 2.3. For everyF e Aut(D?(X)) one has
[F3@)] — (NF + ap)[F3@] + (L + Nrap)[F(@)] — ar[a] = 0 2.2)

in Ko(X) for everya € Ko(X), whereNp = tr(z(F)). In particular, if F € Aut(D?(X))°
then

[F3(a)] — (NF 4+ D[F?(@)] + (N + D[F(a)] — [a] = 0.

Proof. SetN = Nr. We claim that F2(a)] — N[F(a)] +[a] € Ko(X)o C Ko(X) for every
a € Ko(X). Indeed, this follows immediately from the fact thatacts as an elemegton
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the pair(deg rk), whereg? — Ng+ 1 = 0. It remains to apply” to this element irko(X)o
and to use the definition ofg. O

Example 2.4. Let F be of the form(® L) o o*, whereL is a line bundleg is a translation
by a point onX. Thenar = 1 and

F? ~ (®L ® 0*L) o o*, F3~ (®L®0*L ® (6°)*L) oo™,
s0(2.2)amounts to the identity

[L ®0*L ® (63)*L] — 3[L ® 0*L] + 3[L] — [Ox] =0,
or equivalently

(0)*L ~o*L?@ L1

On the other hand, this isomorphism is a direct consequence of the theorem of the cube.
This is why we can viewProposition 2.3s an analogue of this theorem for more general
autoequivalences.

2.2. t-structures onD? (X)

Let us say that an objedt € D’(X) is stableif F = V[n], wheren € Z, V is either
a stable vector bundle or the structure sheaf éfint. It is easy to see that an object
F e DP(X) is stable if and only if HomiF, F) = k (since every object iD?(X) is
isomorphic to the direct sum of its cohomology sheaves).

Below we are going to use some basic notions and results of the torsion theory that can
be found in[9]. For every real numberwe consider a-structure(D%=C, D%=0) on D?(X)
defined as follows. First, let us define a torsion g@ioh. o, Coh<y) in the category CofX)
of coherent sheaves aoxi. By the definition,F € Coh.y (resp., Coly) if all semistable
factors of F have slope- 6 (resp.,< 6). Note that objects of Caly are allowed to have
arbitrary torsion (we consider torsion sheaves as having the slepe Now thez-structure
associated witld is defined by the rule

D#=0:= (K e D"(X) : H*°(K) = 0, H(K) € Coh.},
D" := (K € D"(X) : H™°(K) = 0, H%(K) € Cohy}.

The fact that this is indeed astructure follows from the torsion theory (s§¥). The
heart of thist-structure isC’(X) := D=0 n D?Z0. It is equipped with the torsion pair
(Cohp[1], Coh.p).

Itis convenient to extend the above definitiomte: oo by letting (D=0, D°°-Z0) to be
the standard-structure onD”(X). In the following proposition we list some properties of
these-structures. Let us denote- = (degF), rk(F)) e Z2 for F € D?(X). Note that for
F € Aut(D"(X)) one has rx = m(F)(vs), where Sl (Z) acts orZZ? as on column vectors.

Proposition 2.5.

() The category?(X) has cohomological dimensioh and there is an equivalence
D (CP (X)) ~ D*(X).
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(i) If & € R\ Qthen one has
{(vF|F e C(X), F# 0} = Hy N Z2,

where Hy = {(x1, x2)|x1 — 6x2 > 0}. If & € Q then the above statement is true with
the half-planeHy replaced by its union with the rat<o(6, 1).

Proof.

(i) Letus first prove that Ho@,}(x) (A, B) = 0 foreveryA, B e C?(X). If both objectsA
andB belong to one of the subcategories Cplor Coh4[1], then the assertion is clear.
If A € Coh.y, B € Cohy[1] then Hont,, . (A, B) = Hom* (A, B[—1]) = O for

(X) D’ (X)
i > 1. On the other hand,

Hom,,, (B, A) = Hom"D;}(X)(B[—l], A) ~ Homf);ix)(A, B[-1)* =0
fori > 2, since Horgonx) (A, B[—1]) = 0.
The second assertion follows from this by the standard argument (se@]¥.g.
(i) This follows from the fact that primitive lattice vectors containeddru R<q(6, 1) are
exactly vectors r, whereF is a stable object belonging to Cahor Cohg[1].

O

Itis not difficult to calculate the action of autoequivalence®®¢X ) on these-structures.
We denote by +— g6 = (ab + b)/(c + d), where

(9 ) csLa
g—cdez(),

the standard fractional-linear action@bnR U {oo}.

Proposition 2.6. For everyF € Aut(D?(X)) and every € R U {oco} one hasF(D?=0) =
D&%=0[n] (resp, F(D%Z%) = D$%=0[n]), whereg = n(F) € SL»(Z), n is some integer

Proof. The assertion is clear whehis a translation or the tensor product with a line bundle,
or the pull-back under an automorphism. Hence, it suffices to consider the“case,
whereS is the Fourier—Mukai transform. For every segmért R U {+o0o} let us denote
by Cohy(X) c Coh(X) the full subcategory in CqlX) consisting of sheaveg such that

all semistable factors of' have slope i/ (recall that torsion sheaves have slopeo).
Assume first tha# € R, 6 > 0. SinceS transforms the slopes by the map—> —u 1, we
have

S(Cohg, +o0)) = COh_p-1 gy, S(Cohyg)[1]) = Coh_ o _g-1[1l,
S(CoN—co,01[1]) = Cohyg,+oc]-

This immediately implies thaf sends the-structure associated withto thes-structure
associated with-6-1. SinceS? = [—id]*[—1], it follows that for6 € R, # < O one
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has S(D%=0, pz% = (p—07=0[—1], p—0""=0[—1]). Similarly, it easy to see that
S switches (up to a shift) the standardtructure with the-structure corresponding to
6 =0. O

Let us consider the bilinear forp(F1, F) := Y _;(—1)' dim Hom (F1, 7») on Ko(X),
where Hom(F1, F2) := Homp x, (F1. F2[i]). Itis easy to see that

x(F1, F2) = —detvr, vr,).

The kernel ofy is exactly the subgroufo(X)o C Ko(X) consisting of elements of zero
degree and zero rank. Abusing the notation we alsg@et’) := —det(v, v') forv, v’ € Z2,
so thatyx(F1, F2) = x(vF,, vr,).

The following lemma generalizes to categori®sX) the well-known fact about stable
bundles onX.

Lemma2.7. LetFy, F» be a pair of stable objects i (X) such thaty(F1, F») > 0.Then
Hom(Fy1, F») = 0 anddim Hom(F1, F2) = x(F1, Fo).

Proof. By Proposition 2.6) we havey(F1, F») = dim Hom(F1, F»)—dim Hom!(Fy, F»),

so it is enough to check the vanishing of Hbi#1, F>). In the case when botf; andF»
belong to Colyy (resp., Cohyg[1]) the assumptiorx (v, , vr,) > O implies thatu (F1) <
w(F2) (resp.u(Fi[—1]) < u(F2[—1)])). Hence, in this case the assertion is clear. Itis easy
to see that the casg, € Cohy[1], 7> € Coh.4 cannot occur. Indeed, since the vectors
andvr, belong toHp andx(vr,, vr,) > 0O, the condition rkF, > 0 implies that rk7; > O.

In the remaining cas&; € Coh.y and > € Coh[1], so the assertion follows from the
vanishing of Homd(F1, F2[—1)). O

3. Noncommutative tori, autoequivalences of D?(X) and related algebras

3.1. Morita autoequivalences of noncommutative tori and analogues of homogeneous
coordinate rings

We refer to[15] for an introduction and a survey of main results in the theory of non-
commutative tori. Recall that for evey € R the algebrady of smooth functions on
the noncommutative torug is the algebra of seri€s, anl,ani'lugz in variablesUy, Uz
satisfying the relation

UrUz = exp(2rif) U U1,

such that the coefficient functioiry, n2) — an, ., € C is rapidly decreasing at infinity.

By the definition, vector bundles dfy are finitely generated projectivg,-modules (we
always consider right modules). A complex structureTpns given by a derivatios, :

Ay — Ag, such thab,(Uy) = 1, 8:(U2) = 1, wheret € C \ R (following [14] we will
usually impose the condition I@) < 0). We denote byl , the noncommutative torug
equipped with this complex structure. A holomorphic structure on a vector bundle is given
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by an operatoV : E — E on the corresponding projective righg-module satisfying
V(ea = V(e)a + es;(a), wheree € E, a € Ay. As in [14] we only considestandard
holomorphic vector bundles di , that are given by certain family of standard holomorphic
structures orbasic modules

Recall that a basids-moduleE is uniquely determined by its rank which is a primitive
positive element it7. + Z6 (we assume thais irrational). The algebra of endomorphisms
of E can be identified witt ¢ for somet’ € R and the functoE” - E'®,,, E is a Morita
equivalence between the categories of rightmodules and rightty-modules. It is known
thate’ is necessarily of the forré’ = g6 for someg € SLy(Z)/{£1}. It is convenient to
lift elements of Sla(Z)/{+1} to elementg of SLy(Z) satisfying the condition6 + d > 0,
where

(0 2)

For every sucly € SLy(Z) there is a basic rightiy-module E,(6) of rank rk(E,(9)) =
b + d equipped with an isomorphism EQQE,(6)) >~ A, (see[14, Section 1.1}
Standard holomorphic structures &p(6) are parametrized by the points of a complex
elliptic curveX, = C/(Z + Zv). As we have shown ifiL4] (Proposition 4.}, fixing such a
structure we obtain the Morita equivalenEé— E’ ® 4, E,(0) between the categories of
holomorphic bundles offi,s . and7p ; (preserving the subcategories of standard holomor-
phic bundles).
We are interested in the situation whgil) = 0 for some nontriviag € SLo(Z)/{£1}. It
is easy to see that this happens exactly when eitisaational ol generates a real quadratic
extension ofQ. In this caseE = E,(0) has a natural structure dfy;—A4-bimodule, so we
can consider its tensor powers

E®" :=EQ®a, - ®a, E(ntimes >~ Egx(0),

where the lastisomorphism follows from the general formula for the tensor product of basic
modules (see, e.g. Proposition 1.2[df]). If we equip E with a standard holomorphic
structure thenE®" acquires the induced holomorphic structure, so we can consider the
corresponding space of holomorphic vect&#% E®"). Note that in order for these spaces
to be nonzero we need to impose the condition 0 (where we assume that (m < O;
see[14, Proposition 2.5] Forn = 0 we setE®® = A4 and equip it with the standard
holomorphic structuré,. Now there is a natural structure of an associative algebra on
Bg = @ HYE®")
n>0

given by the tensor product of holomorphic vectors. Clearly, this algebra is a direct gen-
eralization of the homogeneous coordinate ring. One can also define analogues of twisted
homogeneous coordinate ring by changing the bimodule structufe biamely, one can
leave the rightds-module structure the same and twist the fgftmodule structure by some
holomorphic (i.e., commuting with,) automorphism of,.

Recall thatif14] we constructed an equivalence between the derived category of standard
holomorphic vector bundles dfy . and the full subcategory of stable objects in the derived
categoryD”(X) of coherent sheaves on the elliptic cuNe= X, = C/(Z + tZ). This
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equivalence sends each standard holomorphic bundle ofitéink n to a stable object in
Db(X) of degreen and rankz. The image of the category of holomorphic bundles under
this equivalence belongs oo (up to a shift). Moreover, the Morita autoequivalence
E' — E'®4a, E¢(9), whereg(f) = 6, corresponds to some autoequivaleficeD? (X) —

DP(X) preservingc—fr1 C Db(X), such thatr(F) = g’ (the transposed matrix ig) Note
that this is compatible wittProposition 2.6sinceg'(—6~1) = —#~1. It is also easy to
see from the explicit formulas for the equivalencdbf] that F belongs to the subgroup
Aut(D?(X))°? ¢ Aut(D?(X)) introduced inSection 2.1 By twisting the leftAs-module
structure orE,(6) with some holomorphic automorphisms 4§ we can get more general
autoequivalences with w(F) = g'.

Let (F,,n > 0) be the image of the sequence of holomorphic bundr®) under
the above equivalence of categories. Then we Ifgve= F"(Fp) and there is a natural
isomorphism of algebras

Bg ~ AF,}-O'

This isomorphism allows us to switch to the language stiuctures and autoequivalences
of D?(X) in the further study of these algebras.

It is sometimes convenient to change the point of view slightly. Namely, the condition
gf = 0 is equivalent to the condition

PP —(a+dr+1=0,

wherer = ¢6 +d. In other wordsy is an eigenvalue qf. Note tha® can be recovered from
the pair(g, r) by the formulad = (r — d)/c. Thus, we can start with an arbitrary matgix

in SL>(Z) having real positive eigenvalues and- 0. Then fixing one of the eigenvalues

of g, we get a family of graded algebras

Byr( = & HO(Ty, E®")
parametrized by € C such that Infr) < 0, whered = (r — d)/c, E = E¢(0) is equipped
with a standard holomorphic structu¥® (see[14]). Note that for every upper-triangular
matrixu € SLy(Z) one hasBugLrlyr(r) ~ B, (1), S0 this family of algebras really lives on
a double covering of Si(7Z)/Ad(Z), whereZ is embedded as upper-triangular matrices in
SLy(Z).
Proposition 3.1. There is an isomorphism of graded algebras

By (7)°PP ~ By ,1(0),

where

) (d b)
g = :
C a
Proof. We have a natural isomorphist =~ Ag, identical on generators; and Us.
Thus, we can considel = E,(0) as anAd_g—A_y-bimodule. It is easy to see that as such
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a bimoduleE is isomorphic toE, (—6). Moreover, this isomorphism is compatible with
standard holomorphic structures up to a scalar. This implies the result. O

3.2. Algebras associated with autoequivalenceszasttuctures

We want to look at the algebrats- 7, whereF € D?(X) is a stable object : D (X) —
DP(X) is an autoequivalence. In order to get interesting algebras we would like to impose
the conditionF™ (F) ¢ F and Hon(F, F"(F)) = 0 for all sufficiently large: > 0. We are
going to show that this condition implies that the corresponding elem@nt € SLy(Z)
has positive real eigenvalues.

Lemma3.2. For g € SLx(Z) andv € Z? \ {0} the following conditions are equivalent

(i) x(v, g"v) > Ofor all sufficiently large n
(i) x(v, g"v) > Oforall n > O;
(ii) g has positive real eigenvalues aptv, gv) > 0.

Proof. First, let us show that (i) implies (ii). S&t = tr(g). Theng? — Ng+1 = 0. Hence,
X, g"v) = Nx(v, ¢" o) + x(v, g"?v) = 0.
From this we immediately derive that

D xw, g = M
1— Nt+ 72

n>0

whereM = x(v, gv). Therefore, condition (ii) implies that all coefficients of the series
M(1 — Nt+ %)=L except for a finite number are positive. It is easy to see thaWfor 2
(i.e., when both roots of the equatioh— Nt+ 1 = 0 are real and positive) all coefficients
of the serieg1 — Nt + r2)~1 are positive. By the change of variables> —t this implies
that the seriesl — Nt+ r2)~1is alternating folN < —2. Itis also easy to see directly that
for N = +1 or N = 0 this series still has infinitely many negative coefficients. Hence, (i)
implies thatM > 0 andN > 2. The same argument shows that (ii) implies (i) O

Proposition 3.3. Let F : D’(X) — DP(X) be an autoequivalence with(F) = g €
SL»(Z), F be a stable object ab”(X). Then the following conditions are equivalent

(i) F"(F) £ Fforn > 0andHom(F, F"(F)) # Ofor all sufficiently large n
(i) g has positive real eigenvalue® = x(F, F(F)) > 0, and there exist8 € R U {oo}
such that F preserve®.

Under these conditions the Hilbert seriesAf r is equal to

Mt

whereN = tr(g). Alsa if (6, 1) € R?is an eigenvector of g then F preserves the subcategory
¢’ c DP(X) (if (1, 0) is an eigenvector then we set= 00).
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Proof. (i) = (ii). Note that for every pair of nonisomorphic stable objegtg’ € D’(X)
the graded space HOG, G') is always concentrated in one degree. Hence, (i) implies that
x(F, F'(F)) = x(vo, g"vo) > 0 for all sufficiently largen, wherevg = vy € Z2. By
Lemma 3.2this implies thatg has positive eigenvalues and thidt > 0. Also, from the
proof of this lemma we obtain the formula for the Hilbert seried gfr. Now letu € R? be
an eigenvector of. Rescaling: we can assume that either= (6, 1) oru = (1, 0). In the
latter case we sét= oco. In either case we hayg6) = 6 under the fractional-linear action.
Therefore, byProposition 2.6ve haveF(C?) = C?[m] for somem € Z. SinceF belongs to
C?[i] for somei € Z, the nonvanishing of Hoi, F*(F)) for n > 0 implies thatn = 0.

(i) = (i). Let us consider vectors

v, = vpnp = g'vo € 7% c R

Sincey(vo, v1) = M > 0, it follows thaty(v,,, v,+1) > Oforalln > 0. Letm be an integer
such thatF e C’[m]. Then all the vectors, belong to the closed half-plaie 1) Hy c R?2
(seeProposition 2.5 Hence x(v;, vj) > 0 fori < j. Moreover, for a pair of stable objects
G, G e  the vectorsyg and vg can be proportional only iflg = vgy. Hence, we have
x(vi, vj) > 0fori < j. Itremains to apply.emma 2.7 O

Remark 3.4.

1. Itis easy to deduce from the proof that for a pgdir F) such thatg = #(F) € SLy(Z)
has positive real eigenvalues aid> 0, the conditions of the above proposition will be
satisfied for(F[n], F) for somen € 2Z.

2. If F satisfies the equivalent conditions of the above proposiigohas two distinct
eigenvalues an®, 1), (62, 1) are the corresponding eigenvectors, thleipreserves
both subcategorie® andc?2. Hence,F also preserve§® N C%. Moreover, it is easy
to see that® N C% is a “half’ of the naturalF-invariant torsion theory in each of the
categorieg”, €% and that these categories are tiltings of each other with respect to
these torsion theories.

One can rewrite the Hilbert series A  as follows:

1+ (M — Nyt +12
1— Nt+ 72

HAEf(t) =

In particular, we notice that the :~:eriﬁ!s\,n.f(—t)‘1 has similar form but withv andM — N

switched. Recall that if a graded algebtas Koszul then one ha# 41 (f) = Ha(—0"1,
whereA' is the Koszul dual algebra. Below we will show that under appropriate conditions
the algebrad r, r is Koszul with the dual also of the fort g r.

3.3. Koszul duality

For every stable objecF € D’(X) we denote by the right twist corresponding t&.
This is an autoequivalence @?(X) such that one has exact triangles

G — Hom* (G, )* ® F — RrG — G[1]
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forall G € D”(X) (se€[18]; our notation is slightly different). The quasi-inverse autoequiv-
alence is the left twisL £, such that one has an exact triangle

L#(G) - Hom*(F, §) ® F - G — Lz(9)[1].

Theorem 3.5. Let(F, F) be a pair satisfying the equivalent conditionsRybposition 3.3
Letn(F) = g € SLy(Z), N = tr(g), M = x(F, F(F)), and letA = Ap r be the corre-
sponding graded algebra. Then

(a) Ais generated byi; overAg = kifandonly ifM > N +1,or M = N and

detF2(F) # (detF(FH)N ® detFH) L
(b) Ais aquadratic algebraifandonlyi#/ > N +2,or M = N + 1 and

detF3(F) 2 (detF?(F)N ! @ (detF(F) V! @ det(P);

(c) Ais Koszul if and only il > N + 2. Moreover in this case one has the following
isomorphism for the quadratic dual algebra

P
A= Appop-1

Let (r, 1) be the eigenvalues gfand let(u, u’) be the corresponding eigenvectors, so
thatgu = ru, gu = r~1u/. Letu* : RZ — R be the functional defined by*(x) = 1,
u*(u") = 0. We can choose in such a way thai&*(vp) > 0, wherevg = vs (note that
vp cannot be an eigenvector gfsince M = x(vg, gvg) > 0). Consider the half-plane
H = {v € R%u*(v) > 0}. LetC = C’[m] for appropriated € R U {oco} andm € Z, S0
thatF € C and the vectorsug, G € C) belong to the closure dff. ThenF preserveg (see
Proposition 3.R For an object; of D?(X) we set

u*(vg)

u*(vo)’

so that rig(G) > 0 for all G € C. From the definition of:* we immediately derive that
ke(F(G)) =1 - 1Ke(G).

Note thatC contains the subcategory equivalent to the category of stable bundles on a
noncommutative 2-torus andgks proportional to the rank function on such bundles. Let
us denoteF, = F"(F) € C. Since rk(F) = 1, we obtain that

rke(9) =

rke(Fy) = r".

To prove the above theorem we are going to use the twist funktgrs Dl (X) — DP(X).
More precisely, let us consider the objects

F, =Rz, Rr, .- R (Fo) € D" (X),

wheren > 0. It is convenient to extend this definition #-o= 0 by setting#, = Fo. As
we will see, the properties of the algebtadepend on whether some (or affj, belong
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to the subcategorg and also on the vanishing of some (or all) spaces i‘-{dm Fn) for
n<m.

Lemma 3.6. Consider the following generating series
Fitouy= Y x(Fp Farip™ub, R = rke(F)r".
n>0,k>0 n>0
Then one has

M(1 + tu) 1+

L e e YR v vy oy S Bl wyy vy v o

Proof. By the definition of 7, we have an exact triangle
F,_4— Hom*(F,_1, F)* @ F, —» F, — F,_4[1]. (3.1)

This implies the following relations:

X(ﬂv Fmn) =X(«7::1_1’ F)x(Fu, Fm) _X(]:;l_]_, Fn), m>n>1
tke(F,) = x(F,_q. Fr" —rtke(F,_p), n=>1
Note thaty(F,, Fn) = x(Fo, Fm—n) for m > n is a coefficient of the Hilbert series df.
H(®D) =1+ x(Fo. F)r".
n>1
Therefore, denoting
Fo(t) = F(t,0) = Y x(F,. Far)1",
n>0
we obtain the equations
(u+0Ftu) = Hu)L+tFo(®) —1,  R(1) = 1+ rtFo(rt) — tR().
Substitutinge = —t into the first equation we get

H(-n1-1
Fo(t)=$,

and therefore,

HwH—-n"1-1 H(—rt)"1
F(t,u) = , R(t) = ———.
(t, u) " ® 11:
It remains to use the formula
14+ (M — N)t + 12
1—Nt+£2

that was proven ifProposition 3.3 O

H@) =




A. Polishchuk/Journal of Geometry and Physics 50 (2004) 162—-187 177

Proof of Theorem 3.5.

(@) Ifthe mapA; ® A1 — A is surjective thef? = (dim A1)2 > dim A» = MN, hence
M > N.

Conversely, assume thiat > N. Thenwe claimthaF; € Cand Homt(F,, F,,) =0
form > 2. Indeed, since”; = R, (Fo), it is a stable object oD?(X). Hence, the
exact trianglg3.1) for n = 1 implies that eithet”; € C or F; € C[1]. To check that
F, € Citsuffices to prove the inequality ¢kF;) > 0. But

rke(Fp) =Mr — 1= (M — Nyr + 12 > r% > 0,

which proves our first claim (we used the equaly= r + r—1). On the other hand,
sincejf’1 andF,, are both stable objects 6f the vanishing of Horh(F;, F;,) would
follow from the inequalityx(F;, F,) > 0 (seeLemma 2.7. FromLemma 3.6wne get

oF -
Fi. F k= —0u) = ———~.
Y X(FL Fir2u o (O T Nuta2
k>0
The latter series has positive coefficients except maybe for the constant term. Hence,
Homl(f’l, Fm) = 0form > 2. Now from the exact sequence

0 — Hom®(F, Fn) — Hom(Fo, F1) ® HomC(Fy, F)
— Hom®(Fo, Fn) — Hom*(Fy, Fn), (3.2)

we derive the surjectivity of the map; ® A,,_1 — A,, for m > 2. In the case
M > N the above argument shows that I—Pc(rﬁ'l, F2) = 0, hence in this case the map
A1 ® A1 — Az is also surjective. On the other handMf = N thenvyz = vr,, SO
either Hom (F}, F2) = 0, or | >~ F>». Hence, in this case the map ® A1 — A»
is surjective if and only if detF;) # det(F»). Using the trianglg3.1) we get that
det(F)) ~ det(F1)V ® det(Fo)~* which leads to the condition in the formulation of
part (a).

(b) By the result of part (a) we can assume thds generated by ;. The statement that
the algebra& is quadratic is equivalent to surjectivity of the natural maps

Ap2®@1 — ker(A,,_1 ® Ay — Ap) (33)

forallm > 3, wherel = ker(A; ® A1 — Ay) is the space of quadratic relations. From
the exact sequencé.2) above we see thdtcan be identified with HoR(F,, F>) and
that the mayg3.3) can be identified with the natural map

Hom® (%, Fn) ® HomP(Fy, F2) — Hom®(Fy, ), m > 3.

Now the exact triangl€3.1) for n = 2 shows that the kernel and the cokernel of this
map are HorA(F,, F,,) and Hont(F,, F,,), respectively (we use the facts abdfit
proven in part (a)). Therefore, to prove that the algebraquadratic it suffices to show
that Hont(F,, F,,) = 0 form > 3.

The same argument as in (a) shows that eiffige C or F, € C[1]. Moreover, we
have

rke(Fy) = (M — N)? = 1)r? + (M — N)r3,
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so forM > N + 1 we have rk(F,) > 0, henceF, € C. On the other hand, using
Lemma 3.6wve get

(M —N)? -1+ (M — Nyu

k _
ZX(f!Z’ fk+3)u — 1_ NU+M2

k>0

Thus, ifM — N > 2 theny(F,, F,) > Oforallm > 3. SinceF, is a stable object af,
this implies the required vanishing of Hé(rf'—"z, Fm). It M = N+1theny(F,, Fp) >

0 form > 4 while x(F,, F3) = 0. Hence, in this case Ho"r(ﬂt'z, Fm) =0form > 4
and either Hor\(F,, F3) = 0 or 7, ~ F3. The latter isomorphism occurs exactly
when detF,) ~ det(F3). It remains to us¢3.1)to get an isomorphism

detFy) ~ detF) V! @ detF)) ! ~ detF2) V1 @ detF1) V! @ det Fo).
Conversely, if the algebra is quadratic then
X(Fo, F3) = Mx(Fy, F2) — x(Fy, F3) = 0,

hence(M — N)2 > 1. Since we already know that — N > 0 this implies that
M—N>1.

(c) Ifthe algebrad is Koszul then its Hilbert seriel(r) has the property thai(—r)~! has
nonnegative coefficients. But

1+ Nt+ 72 P Mt
1— (M —Nyt+12 1— (M — Nt +12’

so this series has nonnegative coefficients onl i N > 2.

Conversely, assume thM — N > 2. We claim that all the object&, belong to
C and that Horﬁ(f;,, Fm) = 0 form > n. We argue by induction. Assume that the
assertion is true for — 1. Looking at the exact triang(8.1) we conclude as in part (a)
that either,, € C or F,, € C[1]. Since byLemma 3.6we also have r&F,) > 0 this
implies thatF,, € C. On the other hand, the same Lemma shows #i&f,, 7,,,) > 0
for m > n. By Lemma 2.7this implies the vanishing of HohtF,, ;) for m > n.

Now let us set

H(—t) 1=

K, := ® Hom’(F,, F).

m>n

Then K, has a natural structure of (graded) ldffmodule and fron(3.1) we deduce
the following exact sequences afmodules:

0— K, »> A(—n) @ Hom(F,_;, F») = Ky—1 —> 0, n>1,

whereA(—n) is the freeA-module with one generator in degreeSinceKy is the aug-
mentation idea; C A, putting these sequences together we obtain a free resolution
of the trivial modulek of the form

oo = A(=n) @ HOm(F,_4, F») — - -+ = A(—1) @ Hom(Fy, F1) — A.

This implies thatA is Koszul andAIn ~ Hom(F,_,, Fp)* forn > 1.
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To prove the last statement of the theorem we observe that the exact triarigle
shows that

AL, ~ Hom(F,_;, Fu)* ~ Hom(F,, F,).
SinceRx, ~ F"RyF~", we also have

F

n

~ F"(RFF~H" ().
Therefore,
Al ~ Hom(F,, F,) ~ Hom(F, (ReF 1" ().

It is easy to check that this isomorphism is compatible with the multiplicatiod'on
and onAy_p-1 . u

Example 3.7.

1. If ap = 1 then byProposition 2.3art (b) of the above theorem states that r is
quadratic iff M > N + 2. For example, this is the case fbr = (®L), whereL is
a line bundle. This leads to the well-known statement that the corresponding algebra
Apoy = @nonO(X, L") is quadratic iff degL) > 4 (then it is also Koszul). More
generally, if F = (®L) o o, whereo is an automorphism ok, then Af o, is the
so-called twisted coordinate algebra attached to the (#@ais). Such algebras were
considered ifl]. For example, itr is a translation then such an algebra is quadratic iff
deg L) > 4, in which case it is also Koszul.

2. Consider the cas® = N + 1, ar = —1. Then the algebra is often quadratic but
never Koszul. The quadratic dual hA§ = 0. For example, ifL is a line bundle of
degree 3 such that{1]*L ® L1 is not of order 2, then these conditions are satisfied
for F = (®L) o [-1]*. The corresponding algebra is

A=k®HAL) ® HYL Q[-1'"L) ® HAL Q[-1]'L QL) & - - -

with the multiplication rulef x g = f[(—1)9€9N]*g.
3. If M = N+ 1 andar = 1 then the algebrd is not quadratic: one has to add one cubic
relation to the quadratic relations.

The following result allows to check under what conditidieeorem 3.%&an be applied
to sufficiently high powers of a given autoequivalence.

Proposition 3.8. Assume that an elemepte SLp(Z) has positive real eigenvalues and
that the vectow € Z2\ {0} satisfies\ := x(v, gv) > 0. Then the following conditions are
equivalent

) x(v, g"v) —tr(g") - +o0 asn — +o0;

@ii) x(v, g"v) —tr(g") > 0for somen > O;
(i) M > r1 —rp, wherery > rp are eigenvalues of;g
(iv) either g is unipotentor M > N, whereN = tr(g).
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Proof. Note that byLemma 3.2ve havey(v, g"v) > 0 for alln > 0. Moreover, from the
proof of that Lemma we get

D x(w, g = M
’ 1— Nt+¢2
n>1
If g is unipotent then we haw¥ = tr(g") = 2, while x(v, g"v) = nM, so the assertion is
clear.
Now assume tha¢ has two distinct eigenvalues> r~1 > 0. Then from the above
formula we get

n

x(, g"v) = Mrr

_

—1
—r
On the other hand, ¢¢") = r* + r~". Using these formulas it is not difficult to show the
equivalence of (i)—(iv). Indeed, clearly, (i) implies (ii). The implication €3 (iii) follows
immediately from the chain of inequalities

Mr” M@E" —r ")

>
r—r-1 r—r-1

>4+t >

To prove (i) = (iv) we note that — r~1 = +/N2 — 4. Thus, the inequality/ > r — r 1
implies thatM? > N? — 4, henceM > N (sinceN > 3 in our case). Finally, ilY > N
thenM > r — r~1, in which casex(v, g"v) — tr(g") — +oo asn — +oo. This proves
(iv) = (i). 0

4. Ampleness and noncommutative Proj
4.1. Ampleness criterion

Let A be a graded-algebra of the formA = @;>04;, whereAq = k. Recall that a
finitely generated right graded-moduleM is calledcoherentf for every finite collection
of homogeneous elements,, ... ,m, € M the (right) A-module of relations between
m1, ... ,my, is finitely generated. Coherent modules form an Abelian subcategory in the
category of all modules. An algebr& is called right coherent if it is finitely generated
and is coherent as a right module over itself. We denote by colptbg quotient of the
category of coheremd-modules by the Serre subcategory of bounded coherent modules.
Below we are going to show that the categotiéswhered is a quadratic irrationality (or a
rational number), are equivalent to such quotient categories for appropriate algebras of the
form Ag .

LetC be an Abelian category equipped with an autoequivaléhcé — C. For simplicity
we will assume thaf is an automorphism df (the general case can be reduced to this one,
seqd?]). Under appropriate ampleness assumptions the catégarybe recovered from the
algebraAr, o, whereO is an object ofC. Recall (se€13,19) that a sequenc@,,, n € Z)
of objects ofC is calledampleif the following two conditions hold: (i) for every surjection
X — Y in C the induced map Hop{0O,,, X) — Home(0,, Y) is surjective for all <« O;
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(ii) for every objectX € C and every: € Z there exists a surjectio@j.zla-j — X, where
i; < nforall j. The main theorem dfL3] implies that if the sequenc@” O, n € Z) is
ample then the algebrar. o is right coherent and the categoriésind cohprojAr, o are
equivalent. Similar result for Noetherian categories was proven by Artin and 4Bang
The following proposition shows that we do need a more general theorfrB]p§ince for
irrational® the categorie€’ are not Noetherian.

Proposition 4.1. Assume thatis irrational. Then every nonzero objectdfi is not Noethe-
rian.

Proof. It suffices to prove that every stable objgEte C? is not Noetherian. Recall that
the vectorr = (degF), rk(F)) e Z? satisfies degF) — rk(F)0 > 0. Moreover, sinceF

is stable, the numbers deB and rkF are relatively prime. Le¢m, n) be the unique pair
of integers such that rk(F) — ndegF) = 1 and O< m — nf < deqF) — rk(F). There
exists a stable objed® e C? with vz = (m, n) (seeProposition 2.5 By Lemma 2.7one
has dim HontF, ) = 1 and Hom}(F, F) = 0. This implies that there is an exact triangle

FI-1]—> Le(F) > F—>F — ---,

whereL ris the left twist functor corresponding & Note that the objedt (F) is stable,

so eitherL#(F) e C, or Lx(F) € C°[—1]. But the vecton; .z, = vr — v lies in
the half-plan€{(x, y)|x — y0 > 0}, henceL =(F) is in C’. This means thaF is a proper
quotient-object ofF in €. lterating this procedure we will obtain an infinite sequence
F— F1—> F»— ---,whereF, 1 is a proper quotient af,. O

The following theorem gives a criterion of ampleness for sequences of thé féitfy n
7)) in the categorie€’.

Theorem 4.2. Let F : D*(X) — DP(X) be an autoequivalence such that the element
¢ = n(F) € SLy(Z) has distinct positive real eigenvalues. Let= (x, y) € R? be an
eigenvector of g with the eigenvaldel and letd = x/y (if y = 0thend = c0). Let Fg be

a stable object of? and letvy = (degFo, rk Fo) be the corresponding primitive vector in
72. Assume thaF(Fp) € C’. Denote alsaV = tr(g) andM = x(Fo, F(Fo)) = x(vo, Qo).

(@) If M > N — 1then the sequendd” (Fo), n € Z) in ¢’ is ample
(b) If 0 < M < N —1thenthe algebra& ¢, 7, is not finitely generatedhencethe sequence
(F"(Fo)) is not ample

Proof. Below we will denote the coordinates of a vectos R? by (deg(v), rk(v)). Let us
denoteF, = F"(Fo), v, = vg, = g"vo. By Proposition 2.6ne hasF(C?) = C’[m] for
somem € Z. Hence, our assumptioR(Fo) € C? implies thatF(C’) = C’. In particular,
F,elforallneZ.

(a) Assume first thaM > N. Note thatvg is not an eigenvector ¢f, so we can choose
u in such a way thak(u, vgp) > 0. Theny(u, v,) > 0 for alln € Z. Moreover, since
x(g 1o, vo) > 0 and sincex is an eigenvector of 1 with the eigenvalue- 1, it
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follows that degv,,)/rk(v,) tends tod asn — —oo. Observe also that all the vectors
{vr, F € C% lie in the half-planeH = {v : x(u,v) > 0} (sinceé is irrational). It
suffices to prove that for ever§ e C? the following holds:

(i) HomY(F,, F) = 0forn « 0;
(i) the natural map HorgF,,, ) ® F,, — Fis surjective fom « 0.

Moreover, it is enough to check these statements for stabllso, for (ii) it is
enough to prove that £, (F) is in C? for n « 0, whereL £, is the left twist functor
associated wittf,. Since the vectors, lie in the half-planeH, x(v,-1, v,) > 0 and
deqv,)/rk(v,) — 6 asn — —oo, it follows that for every vectow in H one has
x(vn, v) > 0 forn << 0. ApplyingLemma 2.7t0 F, and a stable object € ¢? we
immediately derive (j). It remains to prove that for sugtone hasL £, (F) e ¢’ for
n < 0. SinceL , (F) is a stable object that fits into an exact triangle

F-1] = Lg,(F) - Hom(F,, F) @ F, — F,
it suffices to prove that, .. (» belongs toH. But

ULz, (7 = X(Fn, F)vn — vE = X(Un, VF)Un — VF,
so

X, v g (7)) = X(n, V) X (1, V) — x(u, V),

wherev = vr.

Let r < 1 be the eigenvalue qf corresponding ta and letu’ be the eigenvector
corresponding to—!. Rescalingz and«’ we can assume that = u + u’. Then
vp=ru+r"w, x(u,v,) =r "x(u,u’) > 0and

X(Wn, v) =" x(u, v) +r " x(W', v).
It follows that
X, vip (7)) = (A = Dx(u,v) +r Ay, v),

whereA = x(u, u'). Sincex(u, v) > 0, this quantity is positive for <« 0 provided
thatA > 1. But

-1
Azx(vo,gvo)>r+r o1
rl—r 1y ’

where we used our assumptidh> N.
Now let us consider the cagé = N — 1. The condition (i) is still satisfied, however
(i) has to be replaced by a weaker condition. For evBry ¢’ andn € Z let us set

T, F := coketHom(F,, F) ® F,, — F).
It suffices to prove that for everff we have

Tfn+m t Tfl+m ThWF= 0
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for somem € Z and some: > 0. As before we can assume tlfats a stable object in
C?. Using the action o we can reduce ourselves to the case when the vecton -
satisfiesy(vg, v) > 0. In this case we will show that_,, --- T_1ToF = 0 for some
n > 0. By Lemma 2.7 we have Hom(Fo, F) = 0, so there is an exact triangle

Lzy(F) - Hom(Fo, F) ® Fo — F — Ly (PIL].

Leth; € SLx(Z) be the matrix corresponding to the funciog,[1] : DP(X) — DP(X).
We claim that ifUL}_O(].j[]_] = ho(v)— € H thenTpF = 0. Indeed, sincd. r,(F) is a

stable object, this would imply thdtr, (F) € ¢?, so the map Hort¥Fo, F) @ Fo — F
is surjective. Otherwise, we havgfo(})[ll € H which implies that_ r, (F)[1] belongs

to ¢?, the map HomFo, F) ® Fo — Fis injective with the cokernel

andvr,r = ho(v). Continuing to argue in this way we see that it is enough to show the
existence ofi > O suchthat_, ---h_1ho(v)— € H. Using the formula)Lfom[ll =

v — x(vo, v)vo We can write the matrix okg with respect to the basig, u’'):
1+A4 -—-A
ho = ,
A 1—-A

whereA = x(u, u’). Similarly,

Fi0 o0
h_; = ] ho .
0o r 0 r

Therefore,
pontl 0
h_,---h_1hg = ( 0 1) S}’H»l’

where

. r 0 B = r(l+ A) —rA
“\o ! 0= 1A r_l(l—A) '

But de(S) = 1 and
rS) =r(l+ A +r Q- =N+@r—-rHa=N-M=1

Hence,S2 — S + 1 = 0 and therefores3 = —1. It follows thath _»h_1ho(v) is not in
H which finishes the proof.
(b) LetA = Af,x,. For a graded right-moduleM andn € Z let us set

T,.M := cokerM, ® A(—n) —> M),
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whereA(—n) is a freeA-module withA(—n); = A;_,. To show that the algebra is
not finitely generated we have to show that foralt 1 one has

T,T—1--- TlAZl # 0,

whereA-1 = ®;>14;.
For everyF e ¢’ andn € 7 we set

FZn(ﬂ = & Hom(j:—ms }—)

This space has a natural structure of a graded rghtodule. For example, we have
I'>, (F_,) = A(—n).Nowwe claimthatitis enoughto provettat, i_,11 - - - h_1(vo)

is a nonzero vector i for all n > 1, where we use the notation from the proof of part
(a). Indeed, as we have seen above this would imply that for everyl the object
T_,T_,41---T1Fpis stable and that we have exact sequences

0— Hom(F_,, T—p41--- ThWF) Q@ F_p = T_py1--- T1Fo
> T_pyT—py1---T1Fo— 0

in C?. Using these exact sequences aachma 2.7one can easily see that
Topia(T—pnT—py1---T1Fo) = Ty Ty—1--- T1A51.

Again applyingLemma 2.7we conclude that this space is not zero for every 1
which proves our claim.

To prove thath_, ---h_1(vg) is a nonzero vector i it suffices to show that
S"(R-ou + R-oou’) c H foralln > 1. Note that t¢S) = N — M > 2, soS has
real positive eigenvalues. Singéu, SU = r~1A? > 0, itis enough to prove that here
exists an eigenvector ¢fof the form—xu+u’, wherex > 0. Equivalently, the equation

x(=xu+u', S(=xu+u")) = r 1A%+ [rl+ A) —r 1 - A)]x+rA =0

should have a positive root. For this two inequalities should hble: 52 — 442 > 0
andb < 0, whereb = r(1+ A) — r~1(1— A). But

NM . NM — N2 + 4
tr=——7F——<

—r
17 r1

0

b=r—r 14+ NA=

r —r

sinceM < N — 2 andN > 2. Finally,
D=(r—r 14 NA?—44%2 = N? -4 - 2NM+ (N? — 4 A2
=N2—4—2NM+ M? >0
sinceN — M > 2. O
Remark 4.3. If the equivalent conditions of the above theorem are satisfied then we also
have F" (Fo) € ¢ for all n, where (¢, 1) is the eigenvector of corresponding to the

eigenvalue- 1. The sequenc@™ (Fp)) is ot ample irc?, since there are objecs e c
with Hom'(F" (Fo), F) # 0 and Hon{F" (Fo), F) = 0 for alln <« 0. Nevertheless, we



A. Polishchuk/ Journal of Geometry and Physics 50 (2004) 162—-187 185

still have an equivalence of the derived categorgl‘)c')f/vith the derived category of cohproj
AF 7, since both categories are equivalenbft X). It would be interesting to find a general
framework for this kind of equivalences associated with nonample sequences.

Corollary 4.4. Let(F, F) be a pair satisfying the equivalent conditiondRsbposition 3.3
and letz(F) = g € SLo(Z), N = tr(g), M = x(F, F(F)). Thenthe algebra ¢, ris finitely
generated ifand only i#/ > N — 1.

Proof. If g has distinct eigenvalues then this follows fraimeorem 4.2Now assume that

is unipotent (so thaV = 2). Then the statement reduces to the case vhista composition
of the tensoring by a line bundfewith an automorphism aX. In this case we can assume
thatF € CohX. SinceM > 1 it follows thatF is a vector bundle and deg) > 1. It easy
to see that in this case the sequeE&(F)) is ample, hence, the algebsg- 7 is finitely
generated. O

4.2. Projectivity o’

Now we can show that every categafj, where6 is a quadratic irrationality, can be
described as a “noncommutative Proj”.

Theorem 4.5. For every quadratic irrationality9 € R there exists an autoequivalence
F : D’(X) — Db(X) preservingC? and a stable objecF e ¢? such that the sequence
(F"F,n € Z) is ample. Hencethe corresponding algebra ¢~ is right coherent and
¢? ~ cohprojAr. 7.

Proof. Leta#? + O + y = 0 be the equation satisfied Bywherea, B,y € Z, « > 0.
Consider the ringR = Z[af] C Q(6). ThenR is contained irZ + Z6 andR(Z + 7Z.6) C

Z + 7Z6. Letr € R* be a unit such that & r < 1 (such a unit always exists). Then the
multiplication byr induces an invertible operator ¢h+ Z6 with determinant equal to
Nm(r) = 1. Hence, we have= c6 + d, r0 = a6 + b for some

(9 ) csLz
g—cdez().

Thenu = (9, 1) € R? is an eigenvector of corresponding to the eigenvalueWe claim
that there exists a primitive vector € Z? such thaty(x, v) > 0 andx(v, gv) > tr(g).
Indeed, lets’ € R? be an eigenvector ¢f corresponding to the eigenvalue® and such
that x(u, u’) > 0. We can find a primitive vectar € Z2 such that = xu+ yu, where
x>0,y>0,andxy> (r+r1/¢"1 =P xu, u)). Thenx(u, v) = yx(u,u’) > 0and

x(v, gu) = x(xu+yu, xru+yr~tu’y = xyor=t — P, u') = r+r71

as required. It remains to choose an autoequivaléheéh 7 (F) = g such thatF’ preserves
¢? and an objeciF € ¢’ with vr = v, and then applfrheorem 4.2 O
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Finally, we are going to show that the categ6fyfor arbitraryd € R can be represented
in the form cohprojA for some cohererif-algebraA. Recall that the notion d-algebra
is a natural generalization of the notion of graded algebra[é&8]): such an algebra is
equipped with a decompositioh= @;<;A; ; and the case of a graded algebra corresponds
to A;; = A;_;. As in the case of real multiplication considered above, it is enough to
construct an ample sequencg,, n € Z) of objects inC’, however, not necessarily of the
form F, = F"(Fo) for some autoequivalende Then the main theorem 3] will give an
equivalenc&’ ~ cohprojA, whereA is theZ-algebra associated with the sequeigg),
so thatd; ; = Hom(F;, F;). The construction of the following theorem provides plenty of
ample sequences @.

Theorem 4.6. For everyd € R there exists an ample sequen@g, n € Z) in C? such that
all the objectsF,, are stable

Proof. Clearly, it suffices to consider the case widdsirrational. Recall that all vectolge
for F e C? belong to the half-plan& = Hy = {(x1, x2)|x1 — 6x2 > 0} C R?. Moreover,
for every primitive vecton € H N Z? there exists a stable objeft e 7 with vr = v.
Now let us choose a sequence of primitive vecigrs= (d,, r,) € HNZ? such that, > 0
forn <« 0 and lim,_ _cou, = 0, wherew,, = d,/r,. In other words, we want the ray
Rs>ov, to approaciR>o(6, 1) asn — —oo. Note that sincel, — 6r, > 0 we necessarily
haveu, > 6 for n « 0. In addition we can make this choice in such a way that for all
n < 0onehasu, — 6 > rn‘l. Indeed, we can first choosg for n « 0 to be a sequence
of prime numbers such that lim, _..r, = +o00. Then after picking any sequendg such
that lim,_, _ood, /r, = 6 we can changé, by d, + 1 if necessary to make, — 6 > r;l
for n « 0. Sinced is not an integer and, /r, tends tod asn — —oo, such a change will
leaved, prime tor,,.

Now we claim that if(F,,, n € Z) is any sequence of stable objectgfrwith VF, = Up
then conditions (i) and (ii) from the proof dftheorem 4.2are satisfied for every stable
F e ¢ and therefore the sequencg,) is ample. Indeed, condition (i) follows from
Lemma 2.7since for every € H one hasy(v,, v) > 0 forn << 0. Arguing in the same
way as in the proof oTheorem 4.2ve conclude that it is enough to prove that for every
v € HNZ?one has((v,, v)v, — v € H forn « 0. Letv = (d, r). Then we have to show
that

(dr, —d,nd, —d —0[dr, —d,r)r, —r] >0

for n « 0. Assume first that £ 0 and sefu = d/r. Then the above inequality can be
rewritten as

A = ) (o — 6) > r(u — ).

Note thatr(u — un,) = x(v,, v)/r, > 0 forn « 0. Hence, our inequality fot <« 0 is
equivalent to

u—0
= o

ri(n — 0) >
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But this follows from the condition that, — 6 > r;l sincer, — +o0o asn — —oo.
Similar argument works in the case= 0. O
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